검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        2.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 2 016년부터 2 02 0년까지 내륙 관측소 중 안개 최다발 지역인 안동을 대상으로 XGBoost-DART 머신러닝 알고리즘을 이용하여 1 시간 후 안개 유무를 예측하였다. 기상자료, 농업관측자료, 추가 파생자료와 각 자료 를 오버 샘플링한 확장자료, 총 6개의 데이터 세트를 사용하였다. 목측으로 획득한 기상현상번호와 시정계 관측으로 측 정된 시정거리 자료를 각각 안개 유[1]무[0]로 이진 범주화하였다. 총 12개의 머신러닝 모델링 실험을 설계하였고, 안개 가 사회와 지역사회에 미치는 유해성을 고려하여 모델의 성능은 재현율과 AUC-ROC를 중심으로 평가하였다. 전체적으 로, 오버샘플링한 기상자료와 기상현상번호 기반의 예측 목표를 조합한 실험이 최고 성능을 보였다. 이 연구 결과는 머 신러닝 알고리즘을 활용한 안개 예측에 있어서, 목측으로 획득한 기상현상번호의 중요성을 암시한다.
        4,600원
        3.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study intends to present a traffic node-based and link-based accident prediction models using XGBoost which is very excellent in performance among machine learning models, and to develop those models with sustainability and scalability. Also, we intend to present those models which predict the number of annual traffic accidents based on road types, weather conditions, and traffic information using XGBoost. To this end, data sets were constructed by collecting and preprocessing traffic accident information, road information, weather information, and traffic information. The SHAP method was used to identify the variables affecting the number of traffic accidents. The five main variables of the traffic node-based accident prediction model were snow cover, precipitation, the number of entering lanes and connected links, and slow speed. Otherwise, those of the traffic link-based accident prediction model were snow cover, precipitation, the number of lanes, road length, and slow speed. As the evaluation results of those models, the RMSE values of those models were each 0.2035 and 0.2107. In this study, only data from Sejong City were used to our models, but ours can be applied to all regions where traffic nodes and links are constructed. Therefore, our prediction models can be extended to a wider range.
        4,000원