검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2021.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted to determine the possibility of estimating the daily mean temperature for a specific location based on the climatic data collected from the nearby Automated Synoptic Observing System (ASOS) and Automated Weather System(AWS) to improve the accuracy of the climate data in forage yield prediction model. To perform this study, the annual mean temperature and monthly mean temperature were checked for normality, correlation with location information (Longitude, Latitude, and Altitude) and multiple regression analysis, respectively. The altitude was found to have a continuous effect on the annual mean temperature and the monthly mean temperature, while the latitude was found to have an effect on the monthly mean temperature excluding June. Longitude affected monthly mean temperature in June, July, August, September, October, and November. Based on the above results and years of experience with climate-related research, the daily mean temperature estimation was determined to be possible using longitude, latitude, and altitude. In this study, it is possible to estimate the daily mean temperature using climate data from all over the country, but in order to improve the accuracy of daily mean temperature, climatic data needs to applied to each city and province.
        4,000원
        2.
        2021.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of this study was to access the effect of climate and soil factors on alfalfa dry matter yield (DMY) by the contribution through constructing the yield prediction model in a general linear model considering climate and soil physical variables. The processes of constructing the yield prediction model for alfalfa was performed in sequence of data collection of alfalfa yield, meteorological and soil, preparation, statistical analysis, and model construction. The alfalfa yield prediction model used a multiple regression analysis to select the climate variables which are quantitative data and a general linear model considering the selected climate variables and soil physical variables which are qualitative data. As a result, the growth degree days(GDD) and growing days(GD), and the clay content(CC) were selected as the climate and soil physical variables that affect alfalfa DMY, respectively. The contributions of climate and soil factors affecting alfalfa DMY were 32% (GDD, 21%, GD 11%) and 63%, respectively. Therefore, this study indicates that the soil factor more contributes to alfalfa DMY than climate factor. However, for examming the correct contribution, the factors such as other climate and soil factors, and the cultivation technology factors which were not treated in this study should be considered as a factor in the model for future study.
        4,000원
        3.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of this study was to select a model showing high-levels of interpretability which is high in R-squared value in terms of predicting the yield in the mixed pasture using the factors of fertilization, seeding rate and years after pasture establishment in steps, as well as the climate as a basic factor. The processes of constructing the yield prediction model for the mixed pasture were performed in the sequence of data collection (forage and climatic data), preparation, analysis, and model construction. Through this process, six models were constructed after considering climatic variables, fertilization management, seeding rates, and periods after pasture establishment years in steps, thereafter the optimum model was selected through considering the coincidence of the models to the forage production theories. As a result, Model VI (R squared = 53.8%) including climatic variables, fertilization amount, seeding rates, and periods after pasture establishment was considered as the optimum yield prediction model for mixed pastures in South Korea. The interpretability of independent variables in the model were decreased in the sequence of climatic variables(24.5%), fertilization amount(17.8%), seeding rates(10.7%), and periods after pasture establishment(0.8%). However, it is necessary to investigate the reasons of positive correlation between dry matter yield and days of summer depression (DSD) by considering cultivated locations and using other cumulative temperature related variables instead of DSD. Meanwhile the another research about the optimum levels of fertilization amounts and seeding rates is required using the quadratic term due to the certain value-centered distribution of these two variables
        4,300원
        5.
        2005.09 KCI 등재 서비스 종료(열람 제한)
        Early predictions of crop yields call provide information to producers to take advantages of opportunities into market places, to assess national food security, and to provide early food shortage warning. The objectives of this study were to identify the most useful parameters for estimating yields and to compare two model selection methods for finding the 'best' model developed by multiple linear regression. This research was conducted in two 65ha corn/soybean rotation fields located in east central South Dakota. Data used to develop models were small temporal variability information (STVI: elevation, apparent electrical conductivity (ECa) , slope), large temporal variability information (LTVI : inorganic N, Olsen P, soil moisture), and remote sensing information (green, red, and NIR bands and normalized difference vegetation index (NDVI), green normalized difference vegetation index (GDVI)). Second order Akaike's Information Criterion (AICc) and Stepwise multiple regression were used to develop the best-fitting equations in each system (information groups). The models with δi~leq2 were selected and 22 and 37 models were selected at Moody and Brookings, respectively. Based on the results, the most useful variables to estimate corn yield were different in each field. Elevation and ECa were consistently the most useful variables in both fields and most of the systems. Model selection was different in each field. Different number of variables were selected in different fields. These results might be contributed to different landscapes and management histories of the study fields. The most common variables selected by AICc and Stepwise were different. In validation, Stepwise was slightly better than AICc at Moody and at Brookings AICc was slightly better than Stepwise. Results suggest that the Alec approach can be used to identify the most useful information and select the 'best' yield models for production fields.
        6.
        2001.06 KCI 등재 서비스 종료(열람 제한)
        우리나라 벼 수량의 기상반응을 종합적으로 검토하여 벼 수량예측모델을 구축하고자 1985년부터 1999년까지 15년간 수행한 20개 지역의 벼 지역적응시험 자료를 이용하여 기상에 대한 수량반응의 최대경계선(boundary line)분석을 하였으며, 이에 근거하여 수량예측모형을 설정하였다. 1. 벼의 생육기간을 영양생장기, 생식생장기, 등숙기로 구분하고 각 발육단계를 15-20일 간으로 구분하여 각 시기의 기상요소에 대한 수량반응의 최대경계선은 평균기온( Ta )과 일조시수( Sh)에 대해서는 지수함수 f( Ta )=β0(1-exp(-β1 / Ta ), f( Sh)=β0(1-exp(-β1 Th)로 나타났으며 일교차(Tr)는 2차함수 f( Tr)=β0(1-( Tr-β1 )2 )로, 이 식에서 상수항 β0를 제거하여 수량에 대한 각 기상요소의 영향도를 0-1로 나타내는 기상지수로 나타내었다. 2. 각 생육시기의 평균기온, 일조시간 및 일교차에 대한 수량반응의 최대경계선이외에 불임에 의한 등숙률 저하와 그에 따른 수량감소를 고려하기 위하여 Uchijima(1976)가 제안한 냉각도일수(cooling degree day)를 출수전 30일간의 생식생장기에 계산하여 이에 대한 수량과 등숙률 반응의 최대경계선을 계산하였는데 냉각도일수가 증가하면 수량이 감소하는 지수함수로 잘 표현되어 기존의 연구들과 같은 결과였다. 3. 기상지수는 벼의 생육기간을 영양생장기, 생식생장기 및 등숙기로 구별하고 각 시기별로 수량 기상지수를 각 기상요소 기상지수를 기하평균하여 산출하였는데 각 시기별 수량기상지수의 수량변이 설명도는 각각 0.383-0.430, 0.460-0.534, 0.4603-0.587로 결정계수는 영양생장기<생식생장기<등숙기의 순으로 컸다. 4. 최대경계선 분석방법을 통하여 얻어진 각 생육시기별 수량기상지수를 기하평균하여 구한 종합수량기상지수와 수량과의 직선회귀식을 구하여 수량예측모형(Model I, II, III)을 작성하였다. Model I, II, III)은 각각 결정계수가 0.6512, 0.6703, 0.6129로 모든 생육단계에 걸쳐서 기간을 15-20일 단위로 세분하여 모든 기간의 수량에 대한 기상지수를 고려하여 전 생육기간의 종합수량기상지수를 산출한 Model II가 기상변화에 따른 수량변이의 설명도가 가장 높았다.