It has been proved that agroinfiltration-based temporary expression of coatomer subunit alpha (COPA) gene from Tetranychus urticae hairpin RNA induces RNA interference (RNAi) and lethality to T. urticae. To establish detailed protocols for agroinfiltration, the efficiency of agroinfiltration to the soybean and kidney bean was determined with respect to different Agrobacterium delivery methods (sea sand, carborundum and syringe) and the spacial expression patterns of hairpin RNA was investigated following Agrobacterium delivery. Sea sand and syringe showed the highest expression level in soybean and kidney bean, respectively. Considering the resulting tissue damage, syringe appeared the best choice for agroinfiltration in both soybean and kidney bean. The apical region of a leaf showed more relative expression levels in both soybean and kidney bean compared to the basal region. Following agroinfiltration, adjacent untreated leaves were determined to express hairpin RNA though the expression level was low, suggesting that hairpin RNA can be translocated to other leaves. In conclusion, Agrobacterium delivery by syringe and use of whole leaf were recommended for T. urticae bioassay following agroinfiltration.
Expression of hairpin RNA corresponding to the part of COPA transcript was done by agroinfiltration in soybean plants and was confirmed by qRT-PCR. In a pot experiment, T. urticae was infested on agroinfiltrated soybean plants and T. urticae mortality was observed and compared with control plants overtime. Significantly higher mortalities of T. urticae were observed in the COPA-agroinfiltrated soybean plants from post-infestation day 2 (15 ±5%), day 4 (50 ±10 %). At post-infestation day 6, mortality reached to (70 ± 15%). To validate the observed COPA silencing effect in T. urticae fed on the agroinfiltrated soybean plant expressing COPA hairpin RNAs, qRT-PCR analysis was performed. The transcript level of COPA gene was decreased in T. urticae fed on agroinfiltrated soybean plants expressing COPA hairpin RNA from post-infestation day 2. At post-infestation day 2, 4 and 6, COPA transcript levels were reduced by 23.8, 20.7 and 18.8 fold, respectively compared to post-infestation day 1 (control). The results obtained in this study also ruled that the plant mediated production and uptake of silencing (dsRNAs/siRNAs) is an effective way to trigger RNAi in the T. urticae.
Bromoviridae과 Cucumovirus속에 속하는 대표 바이러스인 오이모자이크바이러스 (Cucumber mosaic virus: CMV)는 많은 경제적으로 중요한 원예작물 및 관상식물들에 심한 손실을 초래하는 바이러스이다. 다중염기서열 비교는 현재까지 서브그룹1에 속하는 모든 CMV 계통들에서 3'말단부의 보전적 염기서열들이 존재하고 있음을 보여주었다. 이런 관찰에 기초하여, 우리는 CMV RNA3와 상동성을 가지는 162 bp 상보적 DNA를 포함하며 CMV감염에 대하여 식물 유래 RNA간섭 현상을 유도할 수 있는 도치된 반복 구조를 가지는 머리핀RNA (pIR-CMVNCR)를 발현시킬 수 있는 벡터를 제작하였다. 아그로박테리움을 이용하여 IR-CMVNCR의 일시 발현은 CMV 감염을 저해하였으며, 아그로박테리움이 접종된 식물의 상엽에서는 CMV 병징이 발현되지 않았다. 또한 RT-PCR결과는 아그로박테리움이 접종된 식물의 접종엽 및 상엽에서 CMV 서브유전자 4를 포함하는 CMV RNA들이 모두 검출이 되지 않았다. CMV 유래 작은 저해 RNA들의 축적이 관찰되었으며, 이의 결과의 의미는 아그로박테리움에 의해 IRCMVNCR을 일시 발현시킨 야생담배 (Nicotiana benthamiana)의 접종엽에서 RNA 간섭 현상이 유도되어 CMV 감염을 억제시키는 것으로 판명되었다.
The full-length cDNA encoding Perilla frutescens limonene synthase (PFLS) (603 amino acids, GenBank accession no. D49368) was cloned. To elucidate the role of PFLS in gene regulation, we transiently transformed full-length PFLS into tobacco plants. PFLS mRNA was first detected in the intact leaves of the plants at 6 h, and the LS transcript level increased after 12 h in leaves treated with oxidative stress-related chemicals. The transient overexpression of PFLS resulted in increased transcription of NbPR1 and NbSIP in Nicotiana benthamiana leaves. Thus, our result confirmed that the infiltration of PFLS gene act as a transcriptional regulator of NbPR1 or NbSIP genes in the tobacco.
Agrobacterium-mediated genetic transformation of Brassica juncea cultivars has been extensively performed for the purpose of molecular breeding. B. juncea L. Czern var. Laciniata Makino, a vegetable crop also called kyona, can be transformed using its hyp