검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2017.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Recently, the use of an aluminum nitride(AlN) buffer layer has been actively studied for fabricating a high quality gallium nitride(GaN) template for high efficiency Light Emitting Diode(LED) production. We confirmed that AlN deposition after N2 plasma treatment of the substrate has a positive influence on GaN epitaxial growth. In this study, N2 plasma treatment was performed on a commercial patterned sapphire substrate by RF magnetron sputtering equipment. GaN was grown by metal organic chemical vapor deposition(MOCVD). The surface treated with N2 plasma was analyzed by x-ray photoelectron spectroscopy(XPS) to determine the binding energy. The XPS results indicated the surface was changed from Al2O3 to AlN and AlON, and we confirmed that the thickness of the pretreated layer was about 1 nm using high resolution transmission electron microscopy(HR-TEM). The AlN buffer layer deposited on the grown pretreated layer had lower crystallinity than the as-treated PSS. Therefore, the surface N2 plasma treatment on PSS resulted in a reduction in the crystallinity of the AlN buffer layer, which can improve the epitaxial growth quality of the GaN template.
        4,000원
        2.
        2015.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        High temperature plasma coating technology has been applied to recover damaged aluminum dies from wear by spraying pure aluminum and alumina powder. However, the coated mixed powder layer composed of aluminum and alumina often undergoes a detachment from the substrate, making the coated substrate die unable to maintain its expected life span. In this study, in order to increase the bonding strength between the substrate and the coating layer, a pure aluminum layer was applied as an intermediate bond layer. In order to prepare the specimen with variable bond coating conditions, the bond coat layers with a various gun speed from 10 cm/sec to 30 cm/sec were prepared with coating cycle variations ranging from three to nine cycles. The specimen with a bond coat layer coated with a gun speed of 20 cm/sec and three coating cycles exhibited ~13MPa of adhesion strength, while the specimen without a bond coat layer showed ~6 MPa of adhesion strength. The adhesion strength with a variation of bond coat layer thickness is discussed in terms of coating parameters.
        4,000원
        3.
        2014.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study is research on the thermal emissivity depending on the alignment degrees of graphite flakes. Samples were manufactured by a slurry of natural graphite flakes with organic binder and subsequent dip-coating on an aluminum substrate. The alignment degrees were controlled by applying magnetic field strength (0, 1, and 3 kG) to the coated samples. The alignment degree of the sample was measured by XRD. The thermal emissivity was measured by an infrared thermal image camera at 100˚C. The alignment degrees were 0.04, 0.11, and 0.17 and the applied magnetic field strengths were 0, 1, and 3 kG, respectively. The thermal emissivities were 0.829, 0.837, and 0.844 and the applying magnetic field strengths were 0, 1, and 3 kG, respectively. In this study the correlation coefficient, R2, between thermal emissivity and alignment degree was 0.997. Therefore, it was concluded that the thermal emissivities are correlated with the alignment degree of the graphite flakes.
        4,000원