플라즈마 화학증착 (PECVD) 장비를 이용하여 SnO2 투명전도막이 피막된 유리기판 위에 p-SiC/i-Si/n-Si 이종접합 태양전지를 제작하였다. p-SiC 층의 증착중에 기체조성 x=CH4/ (SiH4+CH4)의 변화에 대한 태양전지의 광기전 특성을 관찰하였다. 기체조성(x)이 0~0.4의 범위에서 p-SiC 창층의 광학적 밴드갭의 증가로 인하여 태양전지의 효율은 증가하였으나, 그 이상의 기체조성에서는 p-SiC/i-Si 계면에서의 조성불일치가 증가하여 태양전지의 효율이 감소하였다. 이러한 계면문제는 p-SiC 층과 i-Si 계면에서의 조성불일치가 증가하여 태양전지의 효율이 감소하였다. 이러한 계면문제는 p-SiC 층과 I-Si 층 사이에 I-SiC 완충층을 삽입함으로써 크게 감소하였다. 그 결과 유효면적이 1cm2인 glass/SnO2/p-SiC/i-SiC/i-Si/n-Si/Ag 구조의 박막 태양전지는 100mW/cm2 조도 하에서 8.6%의 효율을 나타내었다. (Voc=0.85V, Jsc=16.42mA/cm2, FF=0.615)
조성 변조된 비정질 Fe80Zr20박막의 자기적 성질과 기계적 성질 변화를 전해적 방법에 의한 수소 취입 시간의 함수로 측정하여, 그 상관 관계를 연구하였다. 박막의 Young's modulus는 진동 cantilever 시료의 공명 주파수를 , 10-4nm의 측정 감도를 지닌 laser heterodyne interferometer를 써서 측정하였다. 농도 2N의 인산 전해액에 침적된 시료에 26.3mA/cm2의 전류를 흘려 이루어진 수소취입에 의해, Fe80Zr20 박막의 포화자화 정도는 8배, Young's modulus는 18배 가량 증가하였다. Fe80Zr20박막의 자기적 성질의 변화가 원자적 scale의 미세 구조 변화에 의한 것이라는 간접적인 증거를 제공하였으며, cantilever 시료의 공명주파수 측정을 통하여 박막재료의 기계적 성질을 연구할 수 있는 새로운 가능성을 제시하였다.