검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 250

        22.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The numeric-based Highway Pavement Management System (HPMS), along with an advanced three-dimensional pavement condition monitoring profiler vehicle (3DPM), in South Korea has presented remarkable advancements in pavement management since the early 2000. Based on these results, visual distress on pavement surfaces can be easily detected and analyzed. Additionally, the entire expressway pavement surface conditions in South Korea can be easily monitored using the current graphical user interface-based advanced information graphic (AIG) approach. Therefore, a critically negative pavement section can be detected and managed more easily and efficiently. However, the actual mechanical performance of the selected pavement layer still needs to be investigated in a more thorough manner not only to provide more accurate pavement performance results but also to verify the feasibility of the current 3DPM and AIG approaches. In this study, the low-temperature performance of the selected asphalt pavement layer section was evaluated to further verify and strengthen the feasibility of the current 3DPM and AIG approaches developed by the Korea Expressway Corporation. METHODS : Based on 3DPM and AIG approach, the positive and negative-riding-quality road sections were selected, respectively. The asphalt material cores were extracted from each section then bending beam rheometer mixture creep test was performed to measure their low-temperature properties. Based on the experimental results, thermal stress results were computed and visually compared. RESULTS : As expected, the asphalt material from the negative driving performance section presented a poorer low-temperature cracking resistance than that from the positive driving performance section. CONCLUSIONS : Current 3DPM equipment can successfully evaluate expressway surface conditions and the corresponding material performance quality. However, more extensive experimental studies are recommended to verify and strengthen the findings of this study
        4,000원
        23.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The aim of this study is to evaluate the effects of air voids, binder content, and aggregate gradation on the indirect tensile strength (IDT) and cracking tolerance index (CTindex) of cored asphalt pavements. METHODS : Cored samples were obtained from roads in Incheon city, and several laboratory experiments were performed. First, the cored samples were first to cut into a size appropriate for the IDT test. Subsequently, the air voids of the samples were measured. The damaged sample from the IDT test was loose mixed at 150 ℃ before the binder content was determined, which was conducted via an asphalt extraction test. Finally, the clean aggregates obtained from asphalt extraction process were analyzed in the aggregate gradation test. RESULTS : The result shows that an increase in air voids from 4% to 8% decreases the IDT and cracking tolerance index (CTindex) by 30% and 28%, respectively. Incorporating a binder enhances the ductile behavior of the asphalt mixture, resulting in a higher CTindex. Finally, the contribution of the aggregate grade on the IDT and CTindex is negligible. CONCLUSIONS : The IDT and CTindex are primarily affected by the air voids and binder content. A higher percentage of air voids results in a lower IDT. In addition, a higher amount of binder increases the IDT and CTindex of the cored samples. Meanwhile, the aggregate grade does not affect the IDT.
        4,000원
        24.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : In this study, emissions from asphalt mixture production and construction processes are calculated and used to estimate the emission from each asphalt pavement layer. The calculated emissions for the processes are used as fundamental data to estimate the total emission from the entire life cycle of pavement engineering in South Korea. METHODS : A design proposal and the Korean standard, which provide quantitative information for activities, were used to estimate the amount of construction materials and energy consumption. Subsequently, the LCI DB from NAPA and the LCIA DB from EPA were utilized in conjunction with the estimated quantity to assess the effect of the emissions to determine their environmental impact categories. RESULTS : Calculation results show that 5.84 million ton of CO2eq is discharged from production and construction processes, whereas 3.24 million ton of CO2eq is discharged from operation processes in the pavement engineering sector. The total GHG emission, i.e., 9.08 million ton of CO2eq, is approximately 1.25% of the national GHG emission in 2018. The asphalt mixture production process results in the highest GHG emission in the life cycle of asphalt pavements. CONCLUSIONS : An LCI DB that accounts for the industrial characteristics of South Korea must be established to provide more reliable emission data to be used for national GHG reduction plans, including those for the pavement engineering sector.
        4,000원
        25.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The increasing heat wave warnings during the summer season in Korea have significant impacts on daily life and industry as a whole, especially in urban areas (such as areas with asphalt and sidewalk pavements). Heat waves directly affect urban heat island and heat dome phenomena. Various urban temperature reduction measures are being discussed to reduce urban heat islands and heat dome phenomena and to improve citizen safety against summer heat waves; suggestions include thermal packaging, rooftop greening, and expansion of vegetation areas. There is a lack of analysis on the methodology for increasing the road spraying effect during summer heat waves (e.g., there is no systematic engineering study on the effect from reducing the temperature of the road spraying during a heat wave in the city) and on the types of road pavements in the city. In addition, as the asphalt pavements of roadways and block pavements installed in sidewalks account for a considerable portion of all pavements, this study provides a more systematic and scientific approach and procedures for reducing temperatures through road spraying in the city by tracking the effects of heat waves. METHODS : In this preliminary experiment, four types of road pavement materials were selected as test specimens: asphalt test specimens (AP- 300 mm × 300 mm × 50 mm), concrete test specimens (CP-300 mm × 300 mm × 50 mm), impermeable blocks (IB-200 mm × 200 mm × 60 mm), and self-permeable blocks (PB-200 mm × 200 mm × 60 mm). As a test method to evaluate the size and duration of each spray effect package type, the surface temperature of each specimen was measured using thermal imaging cameras every 20 min after spraying at the maximum temperature point of each specimen, and the average surface temperature was analyzed based on the collected temperature data. In addition, to conduct a quantitative analysis of the effect of reducing the surface temperature of road pavements by road spraying in summer, field tests were conducted on asphalt roads and watertight blocks for sidewalks. RESULTS : As a result of the comparative analysis of the spray effect under a 36 ℃ air temperature based on a heat wave warning, the surface temperatures were, from high to low, the asphalt (68.8 ℃), concrete (59.1 ℃), impermeable block (57.3 ℃), and permeable block (58.7 ℃). The asphalt pavement had the greatest effect on the heat island and heat dome phenomena. From measuring the temperature reduction effect and sustainability of each type of road pavement, the surface temperature reduction effects were ranked in the following order: water-permeable block (Δ18.0 ℃), asphalt test piece (Δ17.5 ℃), concrete test piece (Δ12.2 ℃), and water-permeable block (over 240 min). In the report pitching block, the average road surface temperature reduction between the pore recovery and treatment was expected to continue to decrease by approximately -4.3 ℃ on the day of work and approximately -2.4 ℃ on the next day. The expected effect of the temperature reduction owing to simple spraying on the surface of the pore block was evaluated to be limited to the day. CONCLUSIONS : In the road spray effect analysis conducted on the common asphalt road, there was a slight difference in the initial temperature reduction size as the test specimen was measured, but the surface temperature difference between the non-spray section and spray section tended to be approximately Δ3°C after 140 minutes of spraying. Therefore, it was determined that the asphalt pavement temperature reduction plan through road spraying in urban areas in summer would be the most effective if it was repeated twice or more in an hour (between 13:00 and 14:00) on the day of the heat wave.
        4,000원
        39.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study evaluates the long-term performance of the asphalt overlay designed by the Seoul pavement design method which determines overlay thickness by considering existing pavement conditions, traffic volume, and bearing capacity of the pavement. METHODS : A total of 76 sections including 17 control sections and 59 design sections were constructed under various traffic conditions, overlay thicknesses and asphalt mixtures. The performance of the pavements has been monitored up to 60 months in terms of surface distresses, rutting, and longitudinal roughness. The service life of the pavements was estimated to be the period when the Seoul pavement condition index (SPI) becomes 6.0, i.e., a rehabilitation level. RESULTS : Overall, the service life of the pavements was 72 months in the control and 120 months for the design sections. For relatively thinner overlay sections than designed, the service life reduced significantly; 36 months for 15cm thick overlay and 120 months for 25cm thick overlay. The service life of the pavement in the bus-only lane was 78 months, which is 30 months shorter than that in mixed-traffic lanes. Out of the bus-only lanes, 56% of the pavement along bus stop was deteriorated early to be a poor condition while only 2% of the pavement in a driving lane was degraded to be poor. The overlay with Stone Mastic Asphalt (SMA) in the wearing surface had 38% longer life than that with conventional dense graded mixtures. CONCLUSIONS : Most of the overlays sections designed by the Seoul pavement design method were expected to survive 10 years, except for bus-only lanes. The control sections having 5 to 10 cm thick overlays showed significant lower performance than the design sections. Thus proper thickness and materials considering the characteristics of existing pavement and traffic volumes should be applied to secure the service life of overlays.
        4,000원
        40.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The purpose of this study is to evaluate an asphalt mixture via field application to utilize basalt aggregates produced on Jeju Island for a warm mix asphalt (WMA). METHODS : Using commercially available WMA additives, an indoor experiment is conducted on low- and high-void aggregates among basalt aggregates on Jeju Island. The physical properties of the WMA mixture are evaluated using one solid type and two liquid types of WMA additive. To evaluate the applicability of the WMA additives, air void, saturation, aggregate void, Marshall stability, flow number, indirect tensile strength, and toughness tests are performed. For the field application of WMA using basalt aggregates, three types of pavements (HMA, WMA-Solid, and WMA-liquid) are constructed. When applying the pavements in the field, an anti-stripping agent is incorporated to improve the water resistance while considering the characteristics of the basalt aggregate. Samples are acquired via plant and field coring to evaluate the properties of the materials applied in the field. RESULTS : In the indoor test for analyzing the applicability of the commercialized WMA additives to basalt aggregates, all tests except the indirect tensile strength test show results that satisfy the standards. All test results, including that from the indirect tensile strength test, satisfy the standard values in the test that uses the sample material obtained from the plant. Similarly, in the test with field cores, all test results satisfy the standard values. Therefore, the experimental value in the field application is generally higher than the test value in the indoor experiment. It is inferred that this is due to the difference between the basalt aggregates used in the indoor and field experiments, as well as the addition of the anti-stripping agent. CONCLUSIONS : Basalt aggregates produced on Jeju Island can be used for WMA pavements, as demonstrated via indoor experiments and field applications. However, owing to the characteristics of basalt aggregates, a method for improving water resistance should be considered, and tests to determine the indirect tensile strength should be performed using various basalt aggregates. In addition, because various basalt aggregates exist owing to the diverse geology characteristics of Jeju Island, they should be evaluated via more experiments and field applications.
        4,000원
        1 2 3 4 5