PURPOSES: This study is to develop a road traffic sign recognition and automatic positioning for road facility management. METHODS: In this study, we installed the GPS, IMU, DMI, camera, laser sensor on the van and surveyed the car position, fore-sight image, point cloud of traffic signs. To insert automatic position of traffic sign, the automatic traffic sign recognition S/W developed and it can log the traffic sign type and approximate position, this study suggests a methodology to transform the laser point-cloud to the map coordinate system with the 3D axis rotation algorithm. RESULTS: Result show that on a clear day, traffic sign recognition ratio is 92.98%, and on cloudy day recognition ratio is 80.58%. To insert exact traffic sign position. This study examined the point difference with the road surveying results. The result RMSE is 0.227m and average is 1.51m which is the GPS positioning error. Including these error we can insert the traffic sign position within 1.51m CONCLUSIONS: As a result of this study, we can automatically survey the traffic sign type, position data of the traffic sign position error and analysis the road safety, speed limit consistency, which can be used in traffic sign DB.
The efficiency tests of automatic positioning transmitter (APT) using satellite on life jacket were carried out to minimize casualties of fishermen and to make system optimization for effective SAR (Search and Rescue) operation. As the result of the tests, average position was equaled on the comparison between SPOT using low earth orbit satellite and DGPS (Differential Global Positining System), but standard deviation of DGPS for latitude and longitude were 66.4% and 46.3% smaller than those of SPOT. The position precision of SPOT was almost two times lower than LGT using geostationary satellite to compare 95% circular error probability. However, the success rate of receiver for SPOT was revealed as 86.5~94.1% on the experiments in the South Sea and the West Sea and it was 4.5 times higher than LGT. Therefore, SPOT is expected to contribute greatly to the rapid rescue of victim.
선박 접안을 돕기 위해 레이저 접안 장치는 부두에 설치된 레이저 센서로부터 선박까지의 거리를 센티미터 수준의 정확도로 측정하여 제공한다. 그러나, 레이저 접안 장치는 레이저 센서의 정확한 설치 위치를 알아야 하고, 선박이 접안하는 부두의 전 범위를 다룰 수 있도록 설치되어야 하며, 부두의 선적 및 하역 환경, 조수의 변동을 고려해야 하는 문제가 있다. 특히 레이저 센서 거리 측정기는 가격이 비싸고, 거리를 측정할 수 있는 범위가 좁다는 단점이 있다. 레이저 접안 장치가 지닌 이상과 같은 문제를 해결하기 위한 방법으로 제안된 방법이 반송파보정 측위 기법이다. 본 논문에서는 상대 수평측위 정확 희석도 시뮬레이션을 통하여 레이저 접안 장치가 지닌 문제를 해결하기 위해 기존에 제안된 반송파 보정 측위기법이 연속성을 갖는 센티미터 정확도의 측위 서비스가 어려움을 보이고, 이를 해결하기 위한 방법으로 의사위성 보강 측위기법을 제안한다. 본 논문은 의사위성을 반송파 보정 측위성능 향상을 위해 사용하며, 제안한 측위기법이 기존에 반송파 보정 측위기법과 달리 연속성을 갖는 센티미터 정확도의 측위 서비스가 가능함을 보인다. 또한 제안한 측위기법이 선박 자동접안을 위해 요구하는 측위성능을 만족시키는 기법임을 필드시험을 위해 구축한 테스트 베드에서 확인한다.