Determination of Idarubicin (IDA) as an anthracycline derivative and extensively used treatment of leukemia was investigated by electrochemical method using carbon paste electrode (CPE) modified with NiO/SWCNTs nanocomposite and 1-ethyl-3-methylimidazolium chloride (EMCl). The NiO/SWCNTs nanocomposites and EMCl play an important catalytic role in improving the electron transfer process at surface of CPE to monitoring of IDA. Electrochemical method was used to investigation redox behavior of IDA at surface of the NiO/SWCNTs/EMCl/CPE. The oxidation signal of IDA amplified by modification of CPE by NiO/SWCNTs and EMCl was about 4.3 times and NiO/SWCNTs/EMCl/CPE detected IDA in concentration range of 0.001–160 μM with detection limit of 0.5 nM, respectively. The evaluation of analytical and recovery data confirms the mentioned method was completely validated and successfully employed for the determination of IDA in real samples.
최근 ICT 산업의 기술혁신이 일어남에 따라 생체신호을 인식하고 이에 대해 대응을 하기 위한 웨어러블 센싱 장치에 대한 수요가 증가하고 있다. 이에 따라 본 연구에서는 단순한 함침과정을 통해 3차원 스페이서(3D spacer)직물 을 단일벽 탄소나노튜브(SWCNT)분산용액에 함침공정을 진행해 단일층(monolayer) 압전 저항형 압력 센서 (piezoresistive pressure sensor)를 개발하였다. 3D 스페이서 원단에 전기전도성을 부여하기 위해 시료를 SWCNT 분 산용액에 함침공정을 진행한 후 건조하는 과정을 거쳤다. 함침된 시료의 전기적 특성을 파악하기 위해 UTM (Universal Testing Machine)과 멀티미터를 이용해서 압력의 변화에 따른 저항의 변화를 측정하였다. 또한 센서의 전기적 특성의 변화를 관찰하기 위해 분산용액의 농도, 함침횟수, 시료의 두께를 다르게 해서 시료의 센서로서의 성능을 평가했다. 그 결과 wt0.1%의 SWCNT 분산용액에 함침공정을 2번 진행한 시료가 센서로서 가장 뛰어난 성능 을 나타냄을 알 수 있었다. 두께별로는 7mm 두께의 센서가 가장 높은 GF를 보이고 13mm 두께의 센서가 작동범위가 가장 넓음을 확인했다. 본 연구를 통해 3D spacer 원단으로 제작한 스마트 텍스타일 센서는 공정과정이 단순하면서도 센서로서 성능이 뛰어나다는 장점을 확인할 수 있었다.
The long-term biological monitoring data in domestic streams need to be appropriately analyzed. Food-web analysis using network-based approach can give ecological implications on these kinds of data by including interactions between species. The purpose of this study is constructing food-webs as a preliminary step of the analysis. We used observed species list data for 8 years (2008-2015) provided in Water Information System (WIS), focusing cheonggye streams as a case study. On the basis of species interaction dataset extracted from Global Biotic Interactions (GloBI) database, 96 food-webs were constructed. In further studies, these food-webs could be analyzed in various ways such as static, dynamic and spatial approaches.
Objectives : The purpose of this study is to identify the characteristics that affect the urinary phenol of workers exposed to phenol. Subjects and Methods : Total 41 workers were selected at bisphenol A manufacturing plant and their urinary phenol concentration were measured before and after work along with the phenol concentration in the workplace air, and carried out a survey on work characteristics and lifestyle factors that could affect urinary phenol. Results : The phenol concentration in air during work hours was 0.91 (non-detection~2.88) mg/m3, and the worker’s urinary phenol concentrations before and after work were 100.27±75.76 and 138.13±109. 58 mg/g creatinine, respectively, which showed a statistically significant increase. Comparing smoking and urinary phenol concentration, smokers had 194.54±137.52 mg/g creatinine while non-smokers had 108.88±80.10 mg/g creatinine, thus showing the urinary phenol concentration of smokers to be statistically significantly higher (p=0.046). The urinary phenol concentration increased as work hours, the frequency of skin exposure to phenol, and the amount of drinking increased, and there were differences in its concentration depending on the work type and whether or not workers wore protective gear. The results of carrying out a multiple regression analysis showed that phenol concentration in air, work hours, frequency of skin exposure, and smoking were statistically significant. In other words, the urinal phenol concentration increased more for smokers than for non-smokers, when work hours became longer, and when the frequency of skin exposure was over five times. Conclusions : The factors that influenced urinary phenol in workers exposed to phenol were phenol concentration in air, work hour, frequency of skin exposure, smoking, work and lifestyle habits. Accordingly, biological monitoring for phenol exposure assessment must reflect these factors, and effort must be made to reduce skin exposure at workplace.
이 연구에서는 원자력발전소 주변 환경 방사선이 생태에 미치는 영향을 감시할 수 있는 생물학적 지표로서 야생 등줄쥐의 활용 가능성을 평가하였다. 국내 5지 역을 선정하여 10월에 한정하여 등줄쥐를 채집하였는데, 농경지에서 산중턱에 이르기까지 폭 넓게 서식하였다. 채집한 쥐들에 대하여 황갈색 피모와 검은색 등줄무늬를 관찰하였는데, 외부형태 특성 가운데 몸통의 길이, 꼬리의 길, 귀의 길이를 계측한 결과, 등줄쥐의 분류기준과 일치하였다. 아울러, 간장내 효소형을 분석한 결과 국내에 서식하는 대부분의 등줄쥐가 Apodemus agrarius라는 것을 알 수 있었다. 또한, 야외에서 생포한 등줄쥐를 암수 한 마리씩 동거시키고 생산된 새끼가 5주령에 도달하였을때 방사선을 조사하고, ICR 마우스를 비교로 생존율과 적혈구내 미소핵 출현빈도를 분석한 결과, 반치사 선량은 5와 7.9Gy였다. 이 연구결과로 야생 등줄쥐가 원자력 발전소 주변 수준의 방사선이 인간생환에 미치는 영향을 판단할 수 있는 생물학적 인 지표로서 잠재적 활용성이 높다는 것을 알 수 있었다.
Background: The public has increasing concerns about herbal crops owing to insufficient information on biological hazards such as foodborne pathogens. Therefore, the objective of this study is the development of a herbal crop quality control system through monitoring with biological hazard analysis. Today, it is estimated that millions of people become ill every year from food contamination. The public demands agricultural products of stable and consistent quality. Governments have the responsibility of establishing the standards, legislation and enforcement programs necessary to control food quality and safety. However, research on the biosafety of herbal crop products is still insufficient. Therefore, the implementation of monitoring systems with high standards is critical for public safety. Methods and Results: In this study, we collected 52 samples of herbal crop products, and conducted both quantitative and qualitative biological hazard analysis. With biological hazard analysis, aerobic bacteria, Staphylococcus aureus, Salmonella spp., Escherichia coli, Coliforms, and Listeria spp. could be detected. Conclusions: Herbal crops were found to be contaminated with aerobic bacteria at 3.69 ± 0.32 log CFU/g. Staphylococcus aureus, Salmonella spp., Escherichia coli, Coliforms, and Listeria spp. were not detected in any of the samples. This research suggests that continuous monitoring of biological hazards is required to improve the quality of herbal crops.