본 연구에서는 상용 폴리염화비닐을 개질하여 두 종류의 PVC 기반 이온교환용 고분자를 성공적으로 제조하였다. 이후 개질된 두 이온교환 고분자를 활용한 전기방사 공정과 열 압착 공정을 거쳐 2차원 계면(2D-PVC-BPM)과 3차원 접합부 (3D-PVC-BPM)를 갖는 바이폴라막(BPM)을 제조하였다. 제조된 3D-PVC-BPM은 2D-PVC-BPM에 비해 우수한 물 분해 효율 및 안정성을 보였다. 구체적으로, 300 mA cm-2의 고전류 밀도에서 3D-PVC-BPM은 2D-PVC-BPM가 나타낸 전위보다 4.4 V 낮은 8.05 V의 막 전위를 나타냈다. 더욱이, PVC 주쇄가 가진 내화학성 덕분에 3D-PVC-BPM은 가혹한 조건에서도 높은 화 학적 안정성을 보였고, 이는 4 M H2SO4 및 4 M NaOH 용액에 28일간 침지한 후 관측된 질량 손실이 각각 2.8%와 2.1%에 그친 것을 통해 입증되었다. 끝으로, 3차원 접합부가 3D-PVC-BPM에 맞물림(interlocking) 효과와 넓은 계면면적을 제공해준 덕분에 3D-PVC-BPM의 인장 강도는 36 MPa를 초과했고 신장률 또한 약 50%에 이르는 등 우수한 기계적 물성을 나타냈다.
본 연구에서는 이온성 물질 제거와 재생을 동시 수행하는 바이폴라막에 대한 운전 조건에 따른 성능 영향과 고회 수율을 위한 재생 조건을 연구하였다. 유입수의 농도와 유량이 증가할수록 제거율이 빠르게 감소하였으며 제거율 80% 지점 까지 유입수 농도 300 mg/L에서 최대의 TDS 제거용량을 나타내었고, 유입수 유량은 낮을수록 더 많은 TDS 제거용량을 나 타내었다. 낮은 전압에서는 제거율이 급격하게 감소하였고 전압이 높아질수록 제거율이 증가하지만, 일정 수준 이상의 전압 에서는 추가적인 제거율 향상을 보이지 않았다. 한편 재생을 위한 전압은 75 V로 선정하였는데, 이 이상의 재생 전압에서는 온도의 급격한 상승 및 이로 인한 바이폴라막의 손상이 관찰되었다. 재생 시 재생수의 공급을 최소화하기 위한 다양한 운전 모드가 평가되었고 70%의 고회수율을 구현할 수 있는 재생모드를 제안하였다.
바이폴라막은 양이온교환층과 음이온교환층 및 양극접합층으로 이루어진 이온교환막으로 물 분해 특성을 기반으 로 하여 프로톤과 수산화 이온을 생성시키는 막이다. 이러한 특성을 이용하여 화학 산업, 식품 가공, 환경 보호, 에너지 변환 및 저장과 같은 다양한 응용 분야에서 연구가 되고 있다. 본 논문에서는 바이폴라막 기술에 대한 종합적인 이해를 제공하기 위해 바이폴라막의 개념 및 물 분해 메커니즘과 물 분해 촉매에 대한 조사하였다. 마지막으로 최근 에너지 기술에 적용되고 있는 바이폴라막 프로세스를 조사하였다.
최근 전기자동차용 이차전지 등의 수요가 급증하면서 효율적인 리튬 화합물의 생산이 큰 주목을 받고 있다. 바이 폴라막 전기투석은 친환경적이며 경제성 및 효율성이 우수한 전기화학적 리튬 화합물 생산공정으로 알려져 있다. 바이폴라막 전기투석 공정의 효율은 바이폴라막의 성능에 의해 좌우되기 때문에 바이폴라막의 선택이 매우 중요하다. 본 연구에서는 세 계적으로 가장 널리 사용되고 있는 대표적인 상용 BPM인 Astom사의 BP-1E 및 Fumatech사의 FBM을 비교 분석함으로써 전기화학적 LiOH 생산을 위한 BPED 공정에 적합한 BPM의 특성을 도출하고자 하였다. 체계적인 평가를 통해 BPM의 특성 중 막의 이온전달저항 및 co-ion leakage를 줄이는 것이 가장 중요하고 이러한 관점에서 BP-1E가 FBM보다 더 우수한 성능 을 가지고 있음을 확인하였다.
Conductive polymer composites with high electrical and mechanical properties are in demand for bipolar plates of phosphoric acid fuel cells (PAFC). In this study, composites based on natural graphite/fluorinated ethylene propylene (FEP) and different ratios of carbon black are mixed and hot formed into bars. The overall content of natural graphite is replaced by carbon black (0.2 wt% to 3.0 wt%). It is found that the addition of carbon black reduces electrical resistivity and density. The density of composite materials added with carbon black 3.0 wt% is 2.168 g/cm3, which is 0.017 g/cm3 less than that of non-additive composites. In-plane electrical resistivity is 7.68 μΩm and through-plane electrical resistivity is 27.66 μΩm. Compared with non-additive composites, in-plane electrical resistivity decreases by 95.7 % and through-plane decreases by 95.9 %. Also, the bending strength is about 30 % improved when carbon black is added at 2.0 wt% compared to non-additive cases. The decrease of electrical resistivity of composites is estimated to stem from the carbon black, which is a conductive material located between melted FEP and acts a path for electrons; the increasing mechanical properties are estimated to result from carbon black filling up pores in the composites.
Numerous studies have reported that good adhesion and fluorination of carbon materials in a fluoropolymer matrix enhance their electrical and mechanical properties. However, a composite reinforced with oxyfluorinated graphite has not been reported for improving mechanical properties. This paper discusses the fabrication of conductive fluorinated ethylene–propylene (FEP)/oxyfluorinated graphite (f-graphite) composite bipolar plates (BPs) via compression molding. To investigate the effects of fluorinating graphite, graphite with a large particle size of 500 μm was mixed with FEP powder with a small particle size of 8 μm through ball milling. The FEP/graphite composites exhibited high anisotropic electrical conductivity with the in-plane conductivity much higher than the through-plane conductivity because of the planar orientation of the graphite sheets. Therefore, the mechanical properties of the composites such as flexural strength tended to deteriorate with increasing graphite content. In particular, the FEP/f-graphite composites exhibited excellent flexural strength of 12 MPa, much higher than that of FEP/graphite composites at 9 MPa with a graphite content of 80 wt%. The interfacial interaction between FEP and f-graphite led to improved physical compatibilization, which contributed to enhance the mechanical properties of these composites. Our results are a step toward developing BPs for use in high-temperature fuel cells and heat-sink components.
본 연구의 목적은 정신 질환을 진단받지 않은 일반인들이 양극성 장애 경향성에 따라 변화하는 시공간 주의집중력과 정서 지각 능력을 탐구하는 것이다. 양극성 장애 경향성을 측정하기 위해 한국형 자기보고형 양극성 장애 검사(K-MDQ)를 사용하였고, 시공간 주의집중력와 정서 지각 능력을 측정하기 위해서는 시공간 주의 과제(useful field of view task)와 정서 지각 과제(emotional perception task)를 사용하였다. 또한 본 연구에는 정신 질환 혹은 기타 의학적 문제가 없는 참가자들만 참여하였고 K-MDQ 점수에 따라 세 집단으로 나뉘어졌다. 시공간 주의 과제 수행 결과, K-MDQ 점수가 높은 집단이 다른 집단들에 비해 수행 수준이 낮았다. 이는 양극성 장애 경향성이 높은 일반인은 시공간 주의집중력의 저하가 나타난 것을 의미했다. 또한 정서 지각 과제 수행 결과, K-MDQ 점수가 높은 집단이 다른 집단들에 비해 부정적 정서 지각 편향성이 높게 나타났다. 이는 양극성 장애 경향성이 높은 일반인은 부정적 정서 지각 편향성이 높게 나타났으며 즉, 양극성 장애 경향성이 높은 일반인은 정서 지각 능력이 저하되었음을 의미했다. 이러한 결과는 양극성 장애 환자가 아닌 일반인이 양극성 장애 경향성이 높아지면 양극성 장애 환자에게 나타난 시공간 주의집중력과 정서 지각 능력의 저하가 점진적으로 나타난다는 것을 함의한다.
A composite material was prepared for the bipolar plates of phosphoric acid fuel cells(PAFC) by hot pressing a flake type natural graphite powder as a filler material and a fluorine resin as a binder. Average particle sizes of the powders were 610.3, 401.6, 99.5, and 37.7 μm. The density of the composite increased from 2.25 to 2.72 g/cm3 as the graphite size increased from 37.7 to 610.3 μm. The anisotropy ratio of the composite increased from 1.8 to 490.9 as the graphite size increased. The flexural strength of the composite decreased from 15.60 to 8.94MPa as the graphite size increased. The porosity and the resistivity of the composite showed the same tendencies, and decreased as the graphite size increased. The lowest resistivity and porosity of the composite were 1.99 × 10−3 Ωcm and 2.02 %, respectively, when the graphite size was 401.6 μm. The flexural strength of the composite was 10.3MPa when the graphite size was 401.6 μm. The lowest resistance to electron mobility was well correlated with the composite with lowest porosity. It was possible the flaky large graphite particles survive after the hot pressing process.
아민화한 Polyetherimide (PEI)와 설폰화한 Poly eyhet ether ketone (PEEK) 고분자를 더블캐스팅 방법으로 바이폴라막을 제조하였다. 막의 내구성 향상을 위해 막 표면을 2시간동안 불소화하였다. 각각의 이온교환막은 특성평가를 진행하여 불소화 전후의 특성을 비교하였다. PEI의 불소화에 따른 바이폴라막의 차아염소산 발생량과 운전 시간을 불소화하기 전의 막과 비교하였다. 그 결과 불소화의 여부가 막의 내구성에 영향을 주는 것을 알 수 있었다. 대표적으로 아민화 비율이 3:1인 경우, 불소화 전의 차아염소산 발생농도는 큰 차이를 보이지 않았지만 실험 시간의 경우 각각 153min, 442min으로 약 290min의 차이를 보였다.
Very recently, an efficient electrochemical desalination process employing bipolar membranes with large ion-exchange area is being developed (so-called ‘electro-adsorptive deionization’). In this process, ions dissolved in a feed solution can be removed through an ion-exchange mechanism under a strong electric field (a forward bias condition). The membranes can also be regenerated without the use of additional chemicals by the water-splitting reactions which occur at the bipolar junction of membranes (a reverse bias condition). In this work, we have developed novel bipolar membranes containing iron oxide/hydroxide catalysts. In addition, the ion-exchange capacities of the bipolar membranes have been largely enlarged by embedding finely powdered ion-exchange resins. (No. 10047796) (No. 2015H1C1A1034436)