PURPOSES: In this study, alkali-activated blast-furnace slag (AABFS) was investigated to determine its capacity to absorb carbon dioxide and to demonstrate the feasibility of its use as an alternative to ordinary Portland cement (OPC). In addition, this study was performed to evaluate the influence of the alkali-activator concentration on the absorption capacity and physicochemical characteristics.
METHODS: To determine the characteristics of the AABFS as a function of the activator concentration, blast-furnace slag was activated by using calcium hydroxide at mass ratios ranging from 6 to 24%. The AABFS pastes were used to evaluate the carbon dioxide absorption capacity and rate, while the OPC paste was tested under the same conditions for comparison. The changes in the surface morphology and chemical composition before and after the carbon dioxide absorption were analyzed by using SEM and XRF.
RESULTS: At an activator concentration of 24%, the AABFS absorbed approximately 42g of carbon dioxide per mass of paste. Meanwhile, the amount of carbon dioxide absorbed onto the OPC was minimal at the same activator concentration, indicating that the AABFS actively absorbed carbon dioxide as a result of the carbonation reaction on its surface. However, the carbon dioxide absorption capacity and rate decreased as the activator concentration increased, because a high concentration of the activator promoted a hydration reaction and formed a dense internal structure, which was confirmed by SEM analysis. The results of the XRF analyses showed that the CaO ratio increased after the carbon dioxide absorption.
CONCLUSIONS : The experimental results confirmed that the AABFS was capable of absorbing large amounts of carbon dioxide, suggesting that it can be used as a dry absorbent for carbon capture and sequestration and as a feasible alternative to OPC. In the formation of AABFS, the activator concentration affected the hydration reaction and changed the surface and internal structure, resulting in changes to the carbon dioxide absorption capacity and rate. Accordingly, the activator ratio should be carefully selected to enhance not only the carbon capture capacity but also the physicochemical characteristics of the geopolymer.
본 연구는 GIS․RS를 기반으로 무주군 산림의 이산화탄소 (CO2) 흡수량 및 바이오에너지 공급 잠재량을 추정하기 위하여 수행하였다. 추정 결과, 무주군 산림은 7,800,130 tCO2를 흡수한 것 으로 추정되었으며, 이용 가능한 전체 바이오에너지 공급 잠재량은 11,868,202,837 M㎈인 것으 로 추정되었다. 또한, 연간 바이오에너지 공급 잠재량은 314,876,637 M㎈/year이었으며, 이는 겨울철 난방용 바이오에너지로 무주군 전체 가구수 10,902 가구보다 많은 11,214 가구에 공급할 수 있는 것으로 추정되었다. 본 연구는 국가단위 산림의 CO2 흡수량 및 바이오에너지 공급 잠 재량 추정에 있어서 그 방법론을 제시하였으며, GIS․RS 등의 최신 기법을 기반으로 정밀한 산림 정보를 이용한 국가단위의 추정은 신뢰도를 더욱 높일 수 있을 것으로 판단되었다.
분리막 접촉기를 통한 이산화탄소의 흡수거동 예측을 위한 공정모사를 위해 시스템의 흡수제로 탄산칼륨 수용액을 선정하였고, 시스템에서의 이산화탄소와 관련된 가역반응을 고려하였으며, 사용된 반응속도상수, 평형상수, 용해도 그리고 확산계수는 탄산이온의 농도와 온도의 함수로 사용하였다. 또한 분리막 접촉기 공정모사를 위한 조작 조건으로 중공사막의 기공상태는 비젖음성 조건을 선택하였으며, 이러한 조작조건하에서 이산화탄소 분리거동을 다양한 공정변수 즉, 흡수제의 농도와 유속, 혼합기체의 압력변화에 대해 고찰하였다. 흡수제의 농도가 증가함에 따라 촉진수송에 의한 이산화탄소의 흡수거동을 확인할 수 있었고, 흡수제의 유속 증가에 따라 이산화탄소의 흡수속도가 점차 증가함을 확인할 수 있었으며, 분리막 접촉기에서 혼합기체의 압력변화가 흡수속도에 미치는 영향 및 흡수제의 재사용에 따른 흡수속도를 확인할 수 있었다. 이러한 공정모사를 통해 분리막 접촉기의 구성 및 조작에 필요한 각각의 인자들이 흡수속도에 미치는 영향과 예측, 이를 통한 적절한 조작조건의 도출 가능성을 확인할 수 있었다
Enlargement of street tree planting area is the proper and effective solution to reduce carbon dioxide. This solution bases on the ability of carbon storage and uptake by tree metabolism. However, the circumstance of road side has fatal disadvantages in tree metabolism such as growth and maturity because cutting and filling of roadsides cause unnatural soil composition. In this point, early rootage of street tree is the main factor of reducing carbon dioxide. This study aimed to find a appropriate transplantation planting method for sound and rapid rootage of street tree. For the study, Korean Mountain Ash(Sorbus alnifolia) were used for experimental groups. The groups were categorized by three groups such as trees produced on container with mulching treatment, trees produced in outdoor with mulching treatment, trees produced on container with weeding treatment. Each group consisted 10 trees with same size and transplanted in experimental site. Five months after transplanting, each group was estimated the biomass and carbon storage through a direct harvesting method. According to results of the study, the carbon storage of trees produced on container with mulching treatment is 42% more than trees produced in outdoor with mulching treatment. And the carbon storage of trees produced on container with mulching treatment is 19.5% more than trees produced on container with weeding treatment. These results may imply that transplantation of container produced tree with mulching treatment is the most rapid rootage among other groups. The weeding treatment is more effective than mulching treatment for rapid rootage of street trees.