This study was conducted to determine whether the layout of wheelhouse and work environment of coastal improved stow net fishing boats affect the physical abnormalities of wheelhouse workers through a survey and to use it as basic data to improve the wheelhouse work environment. The analysis results are as follows. The result of factor analysis on the wheelhouse work environment was classified into three factors: suitability of work environment, suitability of work space arrangement, and layout of navigational and fishing equipment. The result of factor analysis on physical abnormalities was divided into two factors: physical pain and fatigue. The results of regression model analysis showing factors affecting physical pain showed that the t-value in the regression model was 3.625 (p < 0.05), indicating that the work environment suitability had an effect on the physical pain. Work environment suitability had a significantly positive effect on the physical pain. As work environment suitability increased by 1, the physical pain increased by 0.371 (p < 0.05). The results of regression model analysis showing the influencing factors on fatigue were found to have a t-value of 3.009 (p < 0.05) in the regression model, indicating that the work environment suitability had a significantly positive effect on the feeling of fatigue. It was found that fatigue increased by 0.324 (p < 0.05) as the work environment suitability increased by 1. In addition, the manageability of task suitability was found to be t = –2.521 (p > 0.05). As the manageability of task suitability increased, the skipper’s fatigue level decreased. From these results, it is inferred that the wheelhouse of the current coastal improved stow net fishing boats causes physical pain and fatigue for the skippers. In order to reduce such physical pain and fatigue, and to improve safe fishing operation and job satisfaction, it is necessary to provide a wheelhouse to fishermen on coastal improved stow net fishing boats in consideration of the characteristics of the wheelhouse work of fishing boats and in consideration of users.
This study describes how the illustration book of Korean coastal and offshore fishing boats was published. The illustration book provides information on fisheries which need boats for their fishing operation. The book contains 25 fishing boats belonging to 15 offshore fisheries and six boats belonging to five coastal fisheries totalling 31 boats belonging to 20 kinds of fisheries. Until now, no books were available in Korea on fishing boats which provided illustrated descriptions of their use in fishing. We carried out field and literature surveys of fishing boats for three years (2016-2018) and the results were compiled into three-dimensional modeling images with schematic drawings of fishing boats, along with text explanations. The particulars and technical drawings of lines, general arrangement (GA), fishing gears and methods are collected and summarized. All fishing boats are modeled with 3D color graphics. The particulars and names of the main items of the fishing equipment are presented besides structural parts. In addition the fishing gear, fishing season and grounds, number of crews and target species for each boat are correctly described. The illustration book of Korean coastal and offshore fishing boats will contribute to understanding the current status of fishing techniques in Korea and will assist in developing new types of fishing boats.
We conducted a questionnaire survey to analyze the current status of the coastal composite fisheries, as well as the improvement point in designing a new type coastal composite fishing boat suitable for Korean fishing environments from April to August 2017. The questionnaire composed of 20 questions about the features of the coastal composite fishing boat and fishing work. The survey sites were selected to cover all parts of the country by considering the geographical position. The significance testing for the response results was accessed by test and ANOVA. The results revealed that more than half (59.1%) of the fishermen operated one day per voyage and operating alone topped with 22.5% in the number of crews, followed by 2 persons (20.3%) and 5 persons (22.1%). The navigation devices had a high rate of installation and GPS plotter ranked first in the devices. In addition, fish finder ranked first in fishing equipment, followed by net hauler. The most inconvenient work that they felt during the fishing operation was fish handing at 49.8% and other general fishing works like setting and hauling line, deck cleaning accounted for about 25%. The hardest work was the accident by ropes wrapped around propeller and the engine trouble came in second. The most inconvenient facilities to the present design of fishing boat was wheelhouse (76.7%), followed by fish hold (38.5%), and deck (35.1%). Furthermore, inconvenient points related to the movement of fishing gear, noise and vibration of engine, slippery deck and small fish hold exceeded 50%.
In this study, we developed a thermoelectric generation system for coastal fishing boats that allows for a high-density arrangement of thermoelectric modules, verified the improvement in performance by conducting comparative analysis between field test results and results from previous studies. The developed thermoelectric generation system was installed in a 3-ton gill-netter to analyze the engine revolutions per minute and energy production per day for each fishing process over a period of 20 days. From the experimental results, the maximum electric energy generated was 207.1 Wh, the minimum was 53.93 Wh and the average electric energy was 129.98 Wh. In accordance with the increasing of the engine r.p.m., the maximum electric production was 183 W at 1,500 r.p.m. It was approximately 80.5% of designed capacity, 227.2 W. Considering the result in the earlier research was 50.7% of designed capacity, 115.8 W. It was improved by 30% compared to the earlier one. The fishing operation was classified as departure, fishing and arrival. From the result on production analysis of electric energy, the composition of energy was 63% in fishing, 19.5% in departure and 17.5% in arrival. The electric energy production per unit hour was 42.8% in arrival, 32.9% in departure and 24.3% in fishing.