검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2013.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study is to develop a method to evaluate lubrication of asphalt binder using WMA additives and compare their lubrication effects on two types of WMA additives and three types of asphalt film thicknesses. METHODS : This study is based on laboratory experiments and rheological analysis of the experimental results. Testing materials are aggregate diskes, asphalt, and WMA additives. The main testing method is stress sweep test by using dynamic shear rheometer (DSR). RESULTS : Sasobit gives more lubrication effects on film thicknesses 0.2mm and under but LEADCAP does on film thicknesses over 0.3mm. CONCLUSIONS : LVE-Limit is a better parameter to discern the lubrication effects on the thin film asphalt thickness. Both Sasobit and LEADCAP WMA additives provide effective lubrication at the compaction temperature.
        4,000원
        2.
        2013.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study is to develop a method to evaluate the compaction effects of asphalt binders using WMA additives and compare their compaction effects on two types of WMA additives, two types of testing temperatures, and three types of asphalt film thicknesses. METHODS : This study is based on laboratory experiments and rheological analysis of the experimental results. Testing materials are aggregate disks, asphalt, and WMA additives. The main testing method is the stress sweep test by using dynamic shear rheometer (DSR). In addition, the testing parameters obtained from the stress sweep results to evaluate lubrication effects are complex modulus and LVE-Limit. RESULTS : At both the first compaction condition (110℃, 0.3mm) and second compaction condition (80℃, 0.2mm) assumed, LEADCAP showed better compaction effects than Sasobit. CONCLUSIONS : The temperature 30℃ lower than general compaction temperatures can provide a better sensitivity for the evaluation of compaction effects. If a testing temperature and film thickness are grouped for the proper compaction conditions in the testing results, the compaction performance of each WMA additive can be more clearly discriminated in the grouped testing results matched with the grouped conditions.
        4,000원
        4.
        2006.04 구독 인증기관·개인회원 무료
        In recent years, demands for sintered ferrous material with higher strength are increasing. To satisfy these demands, studies and commercial use of the die wall lubrication method, the warm compaction method and the combination of both methods are widely carried out to achieve high density. The die wall lubrication warm compaction method makes it possible to achieve high density by reducing internal lubricant through die wall lubrication, although the method involves several issues such as prolonged cycle time due to lubricant spraying and difficulty in spraying lubricant in the case of compacting with complicated geometry. Meanwhile, the conventional warm compaction method requiring no die wall lubricant application cannot achieve such a high density as in the case of die wall lubrication warm compaction due to higher volume of internal lubricant. However, this report discloses our study result in which the possibility of improving density is exhibited by using a lubricant type with superior dynamic ejection property that can reduce volume of lubricant additive.