검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2006.04 구독 인증기관·개인회원 무료
        Both densification and grain growth are driven by the reduction of the interfacial area, kinetics of which depends strongly on the interface structure. Abnormal grain coarsening in the system of singular solid/liquid interface such as WC-Co alloys was explained by the growth mechanism of 2-dimensional nucleation. Based on this concept, the marked inhibition of coarsening of WC grains by VC addition can be approached by the increase in the step free energy, which increases the barrier of 2-dimensional nucleation. The activated sintering in tungsten powders can be approached by the interface structure change induced by the addition of a small amount of nickel.
        4.
        1997.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The densification and grain growth mechanisms of in and in have been investigated. Uranium dioxide powder compacts were sintered at 1 in or at 110 in for various times from 0.5 h to 16 h. The grain size and density of the specimens were measured. From the measured data, the mechanisms of the densification and grain growth were determined by use of available kinetic equations which express the relations between densification and grain growth. In both atmospheres, it has been found that the densification was controlled by the lattice diffusion and the grain growth by the surface diffusion of atoms around pores. It appears that the surface diffusivity as well as the lattice diffusivity increase considerably with the increase in O/U ratio in the specimen.
        4,000원
        5.
        1997.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Densification behavior and grain growth of tool steel powder compacts during pressureless sintering, sinter forging, and hot isostatic pressing were investigated. Experimental data were compared with results of finite element calculations by using the constitutive model of Abouaf and co-workers and that of McMeeking and co-workers. Densification and deformation of tool steel powder compacts were studied by implementing power-law creep, diffusional creep, and grain growth into the finite element analysis. The shape change of a powder compact in the container during hot isostatic pressing was also studied. The theoretical models did not agree well with experimental data in sinter forging, however, agreed well with experimental data in hot isostatic pressing.
        4,000원