검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 11

        2.
        2019.11 KCI 등재 SCOPUS 구독 인증기관·개인회원 무료
        In this study, the glass melting properties are evaluated to examine the possibility of using refused coal ore as replacement for ceramic materials. To fabricate the glass, refused coal ore with calcium carbonate and sodium carbonate in it (which are added as supplementary materials) is put into an alumina crucible, melted at 1,200 ~ 1,500℃ for 1 hr, and then annealed at 600℃ for 2 hrs. We fabricate a black colored glass. The properties of the glass are measured by XRD (X-ray diffractometry) and TG-DTA (thermogravimetry-differential thermal analysis). Glass samples manufactured at more than 1,300℃ with more than 60 % of refused coal ore are found by XRD to be non-crystalline in nature. In the case of the glass sample with 40 % of refused coal ore, from the sample melted at 1,200℃, a sodium aluminum phosphate peak, a disodium calcium silicate peak, and an unknown peak are observed. On the other hand, in the sample melted at 1,300℃, only the sodium aluminum phosphate peak and unknown peak are observed. And, peak changes that affect crystallization of the glass according to melting temperature are found. Therefore, it is concluded that glass with refused coal ore has good melting conditions at more than 1,200℃ and so can be applied to the construction field for materials such as glass tile, foamed glass panels, etc.
        3.
        2018.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, glass fibers are fabricated via a continuous spinning process using manganese slag, steel slag, and silica stone. To fabricate the glass fibers, raw materials are put into an alumina crucible, melted at 1550℃ for 2 hrs, and then annealed at 600℃ for 2 hrs. We obtain a black colored glass. We identify the non-crystalline nature of the glass using an XRD(x-ray diffractometer) graph. An adaptable temperature for spinning of the bulk marble glass is characterized using a high temperature viscometer. Spinning is carried out using direct melting spinning equipment as a function of the fiberizing temperature in the range of 1109℃ to 1166℃ , while the winder speed is in the range of 100rpm to 250rpm. We investigate the various properties of glass fibers. The average diameters of the glass fibers are measured by optical microscope and FE-SEM. The average diameter of the glass fibers is 73 μm at 100rpm, 65 μm at 150rpm, 55 μm at 200rpm, and 45 μm at 250rpm. The mechanical properties of the fibers are confirmed using a UTM(Universal materials testing machine). The average tensile strength of the glass fibers is 21MPa at 100rpm, 31MPa at 150rpm, 34MPa at 200rpm, and 45MPa at 250rpm.
        4,000원
        4.
        2018.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        General D-glass(Dielectric glass) fibers are adaptable to PCBs(Printed circuit boards) because they have a low dielectric constant of about 3.5~4.5. However, very few papers have appeared on the physical characteristics of D-glass fibers. D-glass fibers were fabricated via continuous spinning process using bulk D-glass. In order to fabricate the D-glass, raw materials were put into a Pt crucible, melted at 1650℃ for 2 hrs, and then annealed at 521 ± 10℃ for 2 hrs. We obtained transparent clear glass. The transmittance and adaptable temperature for spinning of the bulk marble glass were characterized using a UV-visible spectrometer and a viscometer. Continuous spinning was carried out using direct melting spinning equipment as a function of the fiberizing temperature in the range of 1368℃ to 1460℃, while the winder speed was between 100 rpm and 200 rpm. We investigated the physical properties of the D-glass fibers. The average diameters of the glass fibers were measured by optical microscope and FE-SEM. The average diameters of the D-glass fibers were 21.36 um at 100 rpm and 34.06 um at 200 rpm. The mechanical properties of the fibers were confirmed using a UTM(Universal materials testing machine). The average tensile strengths of the D-glass fibers were 467.03 MPa at 100 rpm and 522.60 MPa at 200 rpm.
        4,000원
        5.
        2017.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        E (Electric) -glass fibers are the most widely used glass fibers, taking up 90 % of the long glass fiber market. However, very few papers have appeared on the physical characteristics of E-glass fibers and how they depend on the fiberizing temperature of fiber spinning. Glass fiber was fabricated via continuous spinning process using bulk E-glass. In order to fabricate the E-glass specimen, raw materials were put into a Pt crucible and melted at 1550 oC for 2hrs; mixture was then annealed at 621 ± 10 oC for 2hrs. The transmittance and adaptable temperature for spinning of the bulk marble glass were characterized using a UV-visible spectrometer and a viscometer. Continuous spinning was carried out using direct melting spinning equipment as a function of the fiberizing temperature in the range of 1175~1250 oC, while the winder speed was fixed at 500 rpm. Subsequently we investigated the physical properties of the E-glass fiber. The average diameter of the synthesized glass fiber was measured by optical microscope. The mechanical properties of the fiber were confirmed using a UTM (universal materials testing machine); the maximum tensile strength was measured and found to be 1843 ± 449MPa at 1225 oC.
        4,000원
        6.
        2017.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        E-glass (electrical glass) fiber is the widely used as a reinforced composite material of PCBs (printed circuit boards). However, E-glass fiber is not stable because it has a dielectric constant of 6~7. On the other hand, D-glass (dielectric glass) fiber has a low dielectric constant of 3~4.5. Thus, it is adaptable for use as a reinforcing material of PCBs. In this study, we fabricated D-glass compositions with low dielectric constant, and measured the electrical and optical properties. In the glass composition, the boron content was changed from 9 to 31 wt%. To confirm the dependence of the dielectric constant on melting properties, D-glass with 22 wt% boron was melted at 1550 oC and 1650 oC for 2hrs. The glass melted at 1650 oC had a lower dielectric constant than the glass melted at 1550 oC. Therefore, the D-glass with boron of 9~31 wt% was fabricated by melting at 1650 oC for 2hrs, and transparent clear glass was obtained. We identified the non-crystalline nature of the glass using an XRD (x-ray diffractometer) graph. The visible light transmittance values depending on the boron contents were measured and found to be 88.6%~ 82.5%. Finally, the dielectric constant of the D-glass with 31 wt% boron was found to have decreased from 4.18 to 3.93.
        3,000원
        7.
        2013.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Opal glass samples having different chemical compositions were synthesized and transparent glass was obtained after melting. The effects of TiO2, BaF2, and CeO2 content on the color of the opal glass were studied by observing images of the opal samples and analyzing the results via ultraviolet visible spectroscopy and color spectrometry. The aesthetic properties of the opal glass were determined by studying the transmittance of visible light in the 400 nm to 700 nm range. The basic chemical composition of opal glass was SiO2 52.9 wt%, Al2O3 12.35 wt%, Na2CO3 15.08 wt%, K2CO3 10.35 wt%, Ca3(PO)4 4.41 wt%, MgCO3 1.844 wt%, LiCO3 2.184 wt%, and TiO2 0.882 wt%. The glass samples were prepared by varying the weight percentage of TiO2, BaF2, and CeO2. The transmittance of visible light was decreased from 95 % to 75 % in the glass samples in which TiO2 content was increased from 0 to 3.882 wt%. In the blue spectrum region, as the content of TiO2 increased, the reflectance value was observed to become higher. This implies that TiO2 content induces more crystal formation and has an important effect on the optical properties of the glass. The opalescence of opal samples that contained CeO2 or BaF2 is stronger than that in the samples containing TiO2. Opal glass samples comprising TiO2 had tetragonal lattice structures; samples including CeO2 as an additive had cubic lattice structures (FCC, CeO2).
        4,000원
        8.
        2012.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Yellow phosphor dispersed color conversion glasses are promising phosphor materials for white LED applications because of their good thermal durability, chemical stability, and anti-ultraviolet property. Six color conversion glasses were prepared with high Tg and low Tg specimens of glass. Luminous efficacy, luminance, CIE (Commission Internationale de l'Eclairage) chromaticity, CCT (Correlated Color Temperature), and CRI (Color Rendering Index) of the color conversion glasses were analyzed according to the PL spectrum. Color conversion glasses with high Tg glass frit, sintered at higher temperature, showed better luminous properties than did color conversion glasses with low Tg glass frit. The characteristics of the color conversion glass depended on the glass composition rather than on the sintering temperature. The XRD peaks of the YAG phosphor disappeared in the color conversion glass with major components of B2O3-ZnO-SiO2-CaO and, in the XRD results, new crystalline peaks of BaSi2O5 appeared in the color conversion glass with major components of Bi2O3-ZnO-B2O3-MgO. The characteristics of CIE chromaticity, CCT, and the CRI of low Tg color conversion glasses showed worse color properties than those of high Tg color conversion glasses. However, these color characteristics of low Tg glasses were improved by thickness variation. So color conversion glasses with good characteristics of both luminous and color properties were attained.
        4,000원