This study was conducted to select target fish species as baseline research for accumulation analysis of major hazardous chemicals entering the aquatic ecosystem in Korea and to analyze the impact on fish community. The test bed was selected from a sewage treatment plant, which could directly confirm the impact of the inflow of harmful chemicals, and the Geum River estuary where harmful chemicals introduced into the water system were concentrated. A multivariable metric model was developed to select target candidate fish species for hazardous chemical analysis. Details consisted of seven metrics: (1) commercially useful metric, (2) top-carnivorous species metric, (3) pollution fish indicator metric, (4) tolerance fish metric, (5) common abundant metric, (6) sampling availability (collectability) metric, and (7) widely distributed fish metric. Based on seven metric models for candidate fish species, eight species were selected as target candidates. The co-occurring dominant fish with target candidates was tolerant (50%), indicating that the highest abundance of tolerant species could be used as a water pollution indicator. A multi-metric fish-based model analysis for aquatic ecosystem health evaluation showed that the ecosystem health was diagnosed as “bad conditions”. Physicochemical water quality variables also influenced fish feeding and tolerance guild in the testbed. Eight water quality parameters appeared high at the T1 site, indicating a large impact of discharging water from the sewage treatment plant. T2 site showed massive algal bloom, with chlorophyll concentration about 15 times higher compared to the reference site.
In this study, we configured a system which ranks hazardous chemicals to determine their management priorities based on experts' opinions and the existing CRS (chemical ranking and scoring). Aggregate exposure of food, health functional food, oriental/herbal medicine and cosmetics have been taken into account to determine management priority. In this study, 25 hazardous chemicals were selected, such as cadmium, lead, mercury, and arsenic, etc. These 25 materials were ranked according to their 1) risk (exposure or hazard) indexes, 2) exposure source-based weight, and 3) public interests, which were also formed based on the existing priority ranking system. Cadmium was scored the highest (178.5) and bisphenol A the lowest (56.8). Ten materials -- cadmium, lead, mercury, arsenic, tar, acrylamide, benzopyrene, aluminium, benzene, and PAHs -- scored higher than 100. Eight materials -- aflatoxin, manganese, phthalate, chromium, nitrate/nitrite, ethylcarbamate, formaldehyde, and copper -- recorded scores in the range from 70 to 100. Also evaluated as potential risks were 7 materials; sulfur dioxide, ochratoxin, dioxins, PCBs, fumonisin, methyl mercury, and bisphenol A, and these materials were scored above 50. Then we compared risk index and correlation coefficient of total scores to confirm the validity of the total scores; we analyzed correlation coefficient of parameter and indicator. We discovered that the total score and weight, which has incorporated public interests, were high and statistically significant. In conclusion, the result of this study contributes to strengthening risk assessment and risk management of hazardous chemicals.
The purpose of this study is to identify hazardous physical factors and chemical air pollutants in conservation museum in order to protect the cultural heritage. For this, we collected and re-analyzed the articles that were published from 2006 to 2007 by National Research Institute of Cultural Heritage for temperature, relative humidity and the level of pollutants (PM10, CO2, HCHO, CO, NO2, Rn, TVOCs, O3, SO2) in exhibition hall and storage in museum. The pooled average level of temperature at exhibition hall and storage in museum was 23.5±1.4℃ and 20.6±1.1℃, respectively. The range of temperature variation was 5.4℃ for exhibition hall and 4.5℃ for storage. The pooled average concentration of TVOCs in exhibition hall and storage in museum was 493.6±125.6㎍/m3 and 788.9±157.5㎍/m3, respectively. These exceeded 400㎍/ m3 which is the guideline of national law for the Korean Ministry of Public Administration and Security (KMOPAS). Other surveyed pollutants were as per the guidelines of the national law for the Korean Ministry of Environment (KMOE) and the KMOPAS. Through the consideration of the physical and chemical properties and the result of meta-analysis for thermal environment and surveyed temperature, humidity, PM10, NO2, SO2, O3, TVOCs, and HCHO were the identified hazardous physical factors and chemical pollutants at exhibition halls and storages in museum.
최근 폐기물관리법이 개정됨에 따라 재활용 사업자가 재활용 원칙 및 준수사항이 없는 폐기물을 재활용하려는 경우 및 폐기물이 토양, 지하수 등과 접촉하는 매체접촉형 재활용을 하려는 경우에는 재활용환경성평가를 받아야 한다. 재활용환경성평가에서는 폐기물에 대한 유해특성과 재활용 기술의 적합성 등을 평가한다. 폐기물에 대한 유해특성이 있는 경우 폐기물을 재활용하기 위해서는 폐기물관리법 시행령 [별표4의2]에 따라 이들 유해특성을 제거 또는 안정화하여야 한다. 하지만 현재 폐기물 유해특성을 파악하기 위해서는 높은 분석 비용과 많은 시간이 소요되므로 재활용 사업자 모두가 재활용환경성평가에서 폐기물의 유해특성을 분석하기는 현실적으로 어렵다. 유해특성은 폐기물에 포함된 화학물질에 의하여 발현될 수 있으므로 유해특성별 대표 화학물질이 설정되어 있다면 폐기물 유해특성을 사전에 판정할 수 있다. 유해특성별 대표 화학물질 선정을 위하여 국내 화학물질 배출량 조사제도 대상 물질 415종, 화학물질관리법상 유독 및 제한물질 목록 959종, EU Regulation of(EC) No 1272/2008 4,231종의 화학물질을 대상으로 설정하였다. 유해특성의 구분 기준은 United Nations의 Globally Harmonized System of Classification and Labelling of Chemicals(GHS)의 한 부분인 Hazard Statement Code(유해・위험 문구)로 하였다. GHS는 화학물질에 대한 분류・표시 국제조화시스템으로 각 물질별로 유해・위험 문구가 제시되어 있으며 유해・위험 문구를 확인하기 위한 시험 방법과 국내 폐기물 유해특성의 판정 기준의 비교를 통하여 국내 유해특성 별 대표 화학물질을 검토하고자 한다. 최근 재활용 허용 범위의 확대를 위하여 폐기물관리법에서의 폐기물 재활용에 대한 방식은 허용행위 열거방식에서 제한행위 열거방식으로 전면 개정되었다. 이에 따라 폐기물의 재활용으로 인한 인체의 건강과 환경에 대한 악영향을 최소화하기 위하여 폐기물에 대한 신규 유해특성을 도입하였다. 폐기물에 대한 유해특성은 기존 3종(감염성, 부식성, 용출독성)이었으나 6종(폭발성, 인화성, 생태독성 등)이 추가되어 9종으로 확대되었다. 폐기물관리법 시행령 [별표 4의2] (폐기물의 재활용 준수사항)에 따르면 폐기물을 재활용하려는 자는 폐기물에 대한 유해특성을 제거 또는 안정화하여야 한다고 명시되어 있어 폐기물의 재활용을 위해서는 우선적으로 폐기물에 대한 유해특성을 파악해야 한다.