This study develops a model to determine the input rate of the chemical for coagulation and flocculation process (i.e. coagulant) at industrial water treatment plant, based on real-world data. To detect outliers among the collected data, a two-phase algorithm with standardization transformation and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is applied. In addition, both of the missing data and outliers are revised with linear interpolation. To determine the coagulant rate, various kinds of machine learning models are tested as well as linear regression. Among them, the random forest model with min-max scaled data provides the best performance, whose MSE, MAPE, R2 and CVRMSE are 1.136, 0.111, 0.912, and 18.704, respectively. This study demonstrates the practical applicability of machine learning based chemical input decision model, which can lead to a smart management and response systems for clean and safe water treatment plant.
Gate valves are hydraulic components used to shut-off the water flow in water distribution systems. Gate valves may fail owing to various aspects such as leakage through seats, wearing of packing, and corrosion. Because it is considerably challenging to detect valve malfunctioning until the operator identifies a significant fault, failure of the gate valve may lead to a severe accident event associated with water distribution systems. In this study, we proposed a methodology to diagnose the faults of gate valves. To measure the pressure difference across a gate valve, two pressure transducers were installed before and after the gate valve in a pilot-scaled water distribution system. The obtained time-series pressure difference data were analyzed using a machine learning algorithm to diagnose faults. The validation of whether the flow rate of the pipeline can be predicted based on the pressure difference between the upstream and downstream sides of the valve was also performed.
PURPOSES :This study aims to improve complex modeling of multivariable, nonlinear, and overdispersion data with an artificial neural network that has been a problem in the civil and transport sectors.METHODS :Deep learning, which is a technique employing artificial neural networks, was applied for developing a large bus fuel consumption model as a case study. Estimation characteristics and accuracy were compared with the results of conventional multiple regression modeling.RESULTS :The deep learning model remarkably improved estimation accuracy of regression modeling, from R-sq. 18.76% to 72.22%. In addition, it was very flexible in reflecting large variance and complex relationships between dependent and independent variables.CONCLUSIONS :Deep learning could be a new alternative that solves general problems inherent in conventional statistical methods and it is highly promising in planning and optimizing issues in the civil and transport sectors. Extended applications to other fields, such as pavement management, structure safety, operation of intelligent transport systems, and traffic noise estimation are highly recommended.