In the study for a differentiation and development of spermatogonial cells, the researchers should commonly require a simple, fast and reasonable method that could evaluate the developmental stage of male germ cells without any damage and also relentlessly culture them so far as a cell stage aiming at experimental applications. For developing the efficient method to identify the stage of sperm cells, the morphological characteristics of sperm cells were investigated by staining the cells with blue fluorescent dye Hoechst 33258, and a criterion for male germ cell classification was elicited from results of the previous investigation, then the efficiency of the criterion was verified by applying it to assort the germ cells recovered from male mice in age from 6 to 35 days. As morphological characteristics, spermatogonia significantly differed from spermatocytes in size, appearance and fluorescent patches of nucleus, and spermatids could also be distinguished from spermatozoa by making a difference in the volume and shape of nucleus and the shape and fluorescence of tail. Aforesaid criterion was applicable for classifying in vitro cultured sperm cells by verifying its efficiency and propriety for assorting the stages of testicular germ cells. However, the fluorescent staining showed that germ cells in mouse testis should be dramatically differentiated and developed at 21 days and 35 days of age, which were known as times of sexual puberty and maturity in male mice, respectively. In conclusion, the results indicated that this simple criterion for sperm cell classification using fluorescence staining with Hoechst 33258 may be highly efficient and reasonable for spermatogenesis study.
1. 생쥐 고환으로부터 얻은 세포를 배양하여 군집을 형성하는 것을 관찰할 수 있었으며, AP, SSEA-1, -3, -4과 Integrin 6, 1 및 Oct4의 발현을 확인하였다. 2. 생쥐 생식줄기세포를 3-5일정도 배양하게 되면, 여러 층으로 이루어진 군집을 이루게 되는데 이는 생쥐 배아줄기세포나 배아생식줄기세포의 형태와 같은 것이었다. 3. 생쥐 생식줄기세포를 체외에서 효과적으로 분리, 배양할 수 있는 조건을 확립하였다.
Nesfatin-1/NUCB2 is known to take part in the control of the appetite and energy metabolism. Recently, many reports have shown nesfatin-1/NUCB2 expression and function in various organs. We previously demonstrated that nesfatin- 1/NUCB2 expression level is higher in the pituitary gland compared to other organs and its expression is regulated by 17β- estradiol and progesterone secreted from the ovary. However, currently no data exist on the expression of nesfatin-1/NUCB2 and its regulation mechanism in the pituitary of male mouse. Therefore, we examined whether nesfatin-1/NUCB2 is expressed in the male mouse pituitary and if its expression is regulated by testosterone. As a result of PCR and western blotting, we found that a large amount of nesfatin-1/NUCB2 was expressed in the pituitary and hypothalamus. The NUCB2 mRNA expression level in the pituitary was decreased after castration, but not in the hypothalamus. In addition, its mRNA expression level in the pituitary was increased after testosterone treatment in the castrated mice, whereas, the expression level in the hypothalamus was significantly decreased after the treatment with testosterone. The in vitro experiment to elucidate the direct effect of testosterone on NUCB2 mRNA expression showed that NUCB2 mRNA expression was significantly decreased with testosterone in cultured hypothalamus tissue, but increased with testosterone in cultured pituitary gland. The present study demonstrated that nesfatin-1/NUCB2 was highly expressed in the male mouse pituitary and was regulated by testosterone. This data suggests that reproductive-endocrine regulation through hypothalamus-pituitary-testis axis may contribute to NUCB2 mRNA expression in the mouse hypothalamus and pituitary gland.
This study was carried out to evaluate the preventive effect of three forms of Korean ginseng roots (fresh, white and red) against bisphenol A (BPA) toxicity in mouse male germ cells (GC-2spd, TM3, TM4). ROS (reactive oxygen species) generation were measured by DCF-DA (2’,7’-dichlorohydrofluorescein diacetate) assay. Also, semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) was performed to quantify the mRNA expression levels of apoptosis- related genes, Bax (pro-apoptotic gene) and Bcl2 (anti-apoptotic gene). ROS generation was increased by 50 μM BPA, but definitely decreased by treatment with Korean ginseng extracts (fresh, white and red) in mouse male germ cells. In especial, Korean fresh ginseng extract reduced significantly ROS production to normal control. In addition, Korean fresh and white ginseng extracts suppressed the apoptosis of mouse male germ cells by fine-tuning mRNA levels of apoptotic genes changed by BPA. In general, Korean fresh ginseng extract was more effective than white ginseng extract for reducing BPAinduced oxidative stress and apoptosis in mouse male germ cells. Therefore, Korean fresh and white ginseng may help to alleviate biphenol A toxicity in mouse male germ cells.