This paper presents the resizing method of columns and beams that considers column-to-beam strength ratios to simultaneously control the initial stiffness and ductility of steel moment frames. The proposed method minimizes the top-floor displacement of a structure while satisfying the constraint conditions with respect to the total structural weight and column-to-beam strength ratios. The design variable considered in this method is the sectional area of structural members, and the sequential quadratic programming(SQP) technique is used to obtain optimal results from the problem formulation. The unit load method is applied to determine the displacement participation factor of each member for the top floor lateral displacement; based on this, the sectional area of each member undergoes a resizing process to minimize the top-floor lateral displacement. Resizing members by using the displacement participation factor of each member leads to increasing the initial stiffness of the structure. Additionally, the proposed method enables the ductility control of a structure by adjusting the column-to-beam strength ratio. The applicability of the proposed optimal drift design method is validated by applying it to the steel moment frame example. As a result, it is confirmed that the initial stiffness and ductility could be controlled by the proposed method without the repetitive structural analysis and the increment of structural weights.
본 연구에서는 철골모멘트골조의 보-힌지 붕괴모드를 유도하는 최적 내진설계기법을 제안한다. 이는 유전자알고리즘을 사용하며, 기둥의 소성힌지 발생을 억제하는 제약조건을 설정하여 보-힌지 붕괴모드를 유도한다. 제안하는 기법은 구조물량를 최소화하고 에너지소산능력을 최대화하는 목적함수를 사용한다. 제안하는 기법은 9층 철골모멘트골조 예제 적용을 통해 검증한다. 예제 적용을 통해 철골모멘트골조의 보-힌지 붕괴모드를 유도하기 위해 요구되는 기둥-보 강도비를 평가한다. 패널존에 대한 3가지 모델링 기법을 각각 적용하여 모델링 조건에 따른 휨강도비 영향이 추가적으로 검토된다.
Due to a high level of system ductility, steel moment resisting frames have been widely used for lateral force resisting structural systems in high seismic zones. Earthquake field investigations after Northridge earthquake in 1994 and Kobe earthquake in 1995 have reported that many steel moment resisting frames designed before 1990's had suffered significant damages and structural collapse. In this research, seismic performance assessment of steel moment resisting frames designed in accordance with the previous seismic provisions before 1990's was performed. Buckling-restrained braces and shear walls are considered for seismic retrofit of the reference buildings. Increasing stiffness and strength of the buildings using buckling-restrained braces and shear walls are considered as options to rehabilitate the damaged buildings. Probabilistic seismic performance assessment using fragility analysis results is used for the criteria for determining an appropriate seismic retrofit strategy. The fragility contour method can be used to provide an intial guideline to structural engineers when various structural retrofit options for the damaged buildings are available.
현행 내진설계기준에서 RBS-B 접합부는 오직 중간모켄트골조(IMF) 시스템에서만 사용이 허용된다. 본 연구는 현행설계규준에 따라 설계한 RBS-B 접합부를 갖는 철골 모멘트골조 시스템의 내진성능평가를 수행하였다. 이를 위하여 층수(3층, 6층, 9층), 경간너비(6m, 9m), 내진설계범주(SDC C_{max}, SDC C_{min})으로 구성된 12개의 RBS-B접합부를 갖는 철골모멘트골조 건물을 설계하였고 RBS-B 접합부의 비선형 이력거동을 잘 모사하는 접합부 모델을 개발하였다. 설계된 대상골조는 ATC-63에 의해 개발된 내진성능평가방법에 따라 내진성능평가를 수행하였다. 또한 본 연구는 저자가 이전연구에서 제안한 새로운 설계법에 따라 설계된 IMF 시스템의 내진성능평가를 수행하였다. 그 결과 현행규준에 따라 설계한 몇 개의 대상골조가 적절한 붕괴여유비를 보유하지 못하였다. 반면에 새로운 설계절차에 따라 설계된 대상골조는 적절한 붕괴여유비를 보유하였다.