검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문은 아이소-지오메트릭 해석에서 h-세분화를 이용한 국부 세분화법과 이에 따른 설계 민감도 해석의 방법론을 연 구하였다. 다중 조밀도 방식을 이용하여 경계면에서 변위 적합조건을 만족하였고, 기존의 아이소-지오메트릭 해석의 텐서곱 으로 인해 발생하는 원치 않는 자유도 증가의 문제를 극복하였다. 해석에서의 변위 적합조건과 마찬가지로, 설계 민감도 해석에서도 변위 결과와 마찬가지로 똑같은 적합조건을 만족하도록 하는 방법론을 제시하였다. 수치 예제를 통하여 본 방법론의 효율성을 입증하였고, 특별히 응력 집중 문제에서의 결과와 민감도 값을 비교하며 경계면에서의 적합조건을 확인하였다.
        4,000원
        2.
        2020.12 KCI 등재 서비스 종료(열람 제한)
        This study analyzed future projections on daily mean values and extremes for temperature and daily precipitation over Seoul metropolitan city using bias-corrected high-resolution multi-regional climate models. The factors of uncertainty for the future projection of climate variables were defined. In the time series analysis of future projections for regional climate models, the average daily temperature and the number of days of the hot day-hot night were predicted to have a stable trend in the RCP2.6 scenario, and showed a tendency to increase continuously in the RCP8.5 scenario. The daily mean precipitation and RX1day (annual daily maximum precipitation) had large annual variabilities in the models. In the estimation of the fraction of total variance, the daily mean temperature was dominated by the internal variability in the early 21st century and the most contributing to the scenario uncertainty in the late 21st century. The daily mean precipitation showed a remarkable contribution from the internal variability over the entire period. The number of days of the hot day-hot night showed a similar contribution pattern to that of the daily mean temperature. For the RX1day, the internal variability dominated over the entire period, and the scenario uncertainty had little contribution. This study will help establish more scientific climate change adaptation policies by providing the uncertainty information for future climate change projection.
        3.
        2016.06 KCI 등재 서비스 종료(열람 제한)
        In this study, global climate change scenario by Hadley Centre Global Environmental Model version 2-Atmosphere and Ocean (HadGEM2-AO) is dynamically downscaled using four regional climate models (RCMs). All RCMs with 12.5-km and 50-km resolution are integrated for continuous 27 years (1979-2005). In general, RCMs with higher horizontal resolution more reasonably capture the spatial distribution of precipitation over South Korea compared to those with lower resolution. In particular, heavy precipitation regions related to complex mountain ranges are well simulated due to detailed topography in RCMs with higher resolution. Difference between RCMs with dissimilar resolutions is relatively robust in summer compared to other seasons. This could be associated with that higher resolution and detailed topography lead to more realistic simulation of heavy summer precipitation related to mesoscale phenomena.