검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9

        1.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Multi-walled carbon nanotubes (MWCNTs) grown by chemical vapor deposition retain the residual catalyst particles from which the growth occurred, which are considered a detriment to MWCNTs’ performance, especially electrical conductivity. The first direct measurements have been made of the electrical transport through the catalyst cap into the MWCNT using nanoscale 2-point-probe to determine the effects of the catalyst particle’s size and the diameter ratio with its associated MWCNT on the electrical transport through the catalyst cap as compared to the inherent conductivity of the MWCNT. The MWCNT diameter is independent of the catalyst size, but the ratio of the catalyst cap diameter to MWCNT diameter (DC/DNT) determines the conduction mechanism. Where DC/DNT is greater than 1 the resulting I–V curve is near ohmic, and the conduction through the catalyst ( RC+NT) approaches that of the MWCNT (RNT); however, when the DC/DNT < 1 the I–V curves shift to rectifying and RC+NT > > RNT. The experimental results are discussed in relation to current crowding at the interface between catalyst and nanotube due to an increased electric field.
        4,000원
        2.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Effects of multi-walled carbon nanotube (MWCNT) type and flow type (shear and elongational flow) on the electrical conductivity of polycarbonate (PC)/MWCNT nanocomposites were investigated. Two different MWCNTs produced a huge difference in electrical conductivity in an injection molded PC/MWCNT nanocomposite. It was observed that MWCNTs having a higher aspect ratio provide much lower electrical conductivity in injection molded PC/MWCNT nanocomposites while the conductivities of compression molded samples from two different MWCNTs were the same. We found that this is due to a difference in the deformability of the two MWCNTs. Nanocomposite samples prepared at a higher extensional rate and shear rate showed lower electrical conductivity. This is attributed to flow induced orientation of the MWCNTs. The experimental results were discussed in relation to variation in the tube–tube contact due to the change of the MWCNT orientation.
        4,000원
        3.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The microstructure, flexural properties, electrical conductivity, thermal conductivity and electromagnetic interference (EMI) shielding effectiveness (SE) of epoxy composites filled with multi-walled carbon nanotubes (CNTs), exfoliated graphite nanoplatelets (xGnPs) and CNT-xGnP hybrid filler were investigated. The EMI SE of the CNT-xGnP hybrid composite was higher than 25 dB at 100 MHz while that of the xGnP based composite was almost zero. The flexural modulus of the CNT-xGnP based epoxy composite continuously increased to 3.32 GPa with combined filler content up to 10 wt% while that of the CNT based epoxy composites slightly decreased to 1.96 GPa at 4 wt% CNT, and dropped to 1.57 GPa at 5 wt% loading, which is lower than that of epoxy. The CNT and CNT-xGnP samples had the same EMI SE at the same surface resistivity, because samples with the same surface conductivity have the same amount of the charge carriers.
        4,000원
        4.
        2016.11 구독 인증기관·개인회원 무료
        탄소나노튜브(MWCNT)는 그 구조적 특징에 따라 열적, 기계적 안정성이 우수하며 고분자 매트릭스 내에 소량만 첨가하여도 향상된 물성을 얻을 수 있다. 그러나 탄소나노튜브를 고분자 복합체에 응용 시 분산이 필수적으로 요구되기 때문에 전처리 기술이 필요하다. 본 연구에서는 PEO 막의 CO2 투과도 향상을 위해 PEO/EVA 혼합물에 산처리를 통해 표면에 친수성기가 도입된 다중벽 탄소나노튜브(MWCNT-COOH)를 첨가하여 PEO/EVA/MWCNT 혼성막을 제조하였다. 제조된 혼성막의 특성을 FT-IR, TGA, SEM 분석으로 확인하였다.
        5.
        2015.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Multi-walled carbon nanotube (MWCNT)/polycarbonate (PC) nanocomposite was prepared by direct melt mixing to investigate the effect of the shear rate on the surface resistivity of the nanocomposites. In this study, an experiment was carried out to observe the shear induced orientation of the MWCNT in the polymer matrix using a very simple melt flow indexer with various loads. The compression-molded, should be eliminated. MWCNT/PC nanocomposite sample exhibited lower percolation thresholds (at 0.8 vol%) and higher electrical conductivity values than those of samples extruded by capillary and injection molding. Shear induced orientation of MWCNT was observed via scanning electron microscopy, in the direction of flow in a PC matrix during the extrusion process. The surface resistivity rose with increasing shear rate, because of the breakdown of the network junctions between MWCNTs. For real applications such as injection molding and the extrusion process, the amount of the MWCNT in the composite should be carefully selected to adjust the electrical conductivity.
        4,000원
        6.
        2014.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Multi-walled carbon nanotube reinforced epoxy composites were fabricated using shear mixing and sonication. The mechanical, viscoelastic, thermal, and electrical properties of the fabricated specimens were measured and evaluated. From the images and the results of the measurements of tensile strengths, the specimens having 0.6 wt% nanotube content showed better dispersion and higher strength than those of the other specimens. The Young's moduli of the specimens increased as the nanotube filler content was increased in the matrix. As the concentrations of nanotubes filler were increased in the composite specimens, their storage and loss moduli also tended to increase. The specimen having a nanotube filler content of 0.6 wt% showed higher thermal conductivity than that of the other specimens. On the other hand, in the measurement of thermal expansion, specimens having 0.4 and 0.6 wt% filler contents showed a lower value than that of the other specimens. The electrical conductivities also increased with increasing content of nanotube filler. Based on the measured and evaluated properties of the composites, it is believed that the simple and efficient fabrication process used in this study was sufficient to obtain improved properties in the specimens.
        4,000원
        7.
        2012.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, iron oxide (Fe3O4) nanoparticles were deposited on multi-walled carbon nanotubes (MWNTs) by a simple chemical coprecipitation method and Fe3O4-decorated MWNTs (Fe-MWNTs)/polypyrrole (PPy) nanocomposites (Fe-MWNTs/PPy) were prepared by oxidation polymerization. The effect of the PPy on the electrochemical properties of the Fe-MWNTs was investigated. The structures characteristics and surface properties of MWNTs, Fe-MWNTs, and Fe-MWNTs/PPy were characterized by X-ray diffraction and X-ray photoelectron spectroscopy, respectively. The electrochemical performances of MWNTs, Fe-MWNTs, and Fe-MWNTs/PPy were determined by cyclic voltammetry and galvanostatic charge/discharge characteristics in a 1.0 M sodium sulfite electrolyte. The results showed that the Fe-MWNTs/PPy electrode had typical pseudo-capacitive behavior and a specific capacitance significantly greater than that of the Fe-MWNT electrode, indicating an enhanced electrochemical performance of the Fe-MWNTs/PPy due to their high electrical properties.
        3,000원
        8.
        2011.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this work, fabrication and electrochemical analysis of an individual multi-walled carbon nanotube (MWNT) electrode are carried out to confirm the applicability of electrochemical sensing. The reactive ion etching (RIE) process is performed to obtain sensitive MWNT electrodes. In order to characterize the electrochemical properties, an individual MWNT is cut by RIE under oxygen atmosphere into two segments with a small gap: one segment is applied to the working electrode and the other is used as a counter electrode. Electrical contacts are provided by nanolithography to the two MWNT electrodes. Dopamine is specially selected as an analytical molecule for electrochemical detection using the MWNT electrode. Using a quasi-Ag/AgCl reference electrode, which was fabricated by us, the nanoelectrodes are subjected to cyclic voltammetry inside a 2μL droplet of dopamine solution. In the experiment, RIE power is found to be a more effective parameter to cut an individual MWNT and to generate "broken" open state, which shows good electrochemical performance, at the end of the MWNT segments. It is found that the pico-molar level concentration of analytical molecules can be determined by an MWNT electrode. We believe that the MWNT electrode fabricated and treated by RIE has the potential for use in high-sensitivity electrochemical measurement and that the proposed scheme can contribute to device miniaturization.
        4,000원
        9.
        2010.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A method of functionalization of multi-walled carbon nanotube (MWNT) at room temperature using dry ozone gas is described. The resulting MWNT were characterized by Fourier transform infrared, x-ray photoelectron spectroscopy, and scanning electron microscopy. Combined to these analyses and solubility in liquids, it could be concluded that the dry ozone gas exposure introduces polar functional groups such as carboxylic groups to MWNT similar to acidic modification of MWNT. Particularly, the stable dispersion of MWNT in water after ozone treatment above a critical level could be obtained, implying potential bio-application. The hydrophilic functional groups on the MWNT introduced by ozone oxidation were helpful in improving the interaction with functional groups in PA6 such as -NH2 and -CONH- resulting in improved mechanical properties.
        4,000원