Nanostructured lipid carriers (NLC) are getting attention as delivery system for nutraceuticals due to its low toxicity and higher loading efficiency of active ingredients. However, the cytotoxicity of NLC had not fully evaluated especially on neuroblastoma. In this study, cytotoxicity of NLC and curcumin-loaded NLC (C-NLC) were evaluated on SH-SY5Y neuroblastoma cells investigating cell morphology, mitochondrial activity, and reactive oxygen species (ROS) production compared to H2O2 treatment as a positive control. As a result, the metabolic activity was inhibited about 40% by 250ppm of NLC along with morphological change. C-NLC exhibited 50% inhibitory effect on mitochondrial activity at 500ppm, which was lower than NLC itself. Moreover, NLCs significantly induced ROS production which was recognized as one of the indicators of cytotoxicity generated by NLCs. In conclusion, lower cytotoxic effect was observed with NLC on SH-SY5Y neuroblastoma based on ROS production and these investigation could be used for further application of NLC in food industry.
The mu opioid receptor (MOR) has been regarded as the main site of interaction with analgesics in major clinical use, particularly morphine. The repressor element-1 silencing transcription factor (REST) functions as a transcriptional repressor of neuronal genes in non-neuronal cells. However, it is expressed in certain mature neurons, suggesting that it may have complex and novel roles. In addition, the interactions between MOR and REST and their functions remain unclear. In this study, we examined the effects of morphine on the expression of REST mRNA and protein in human neuroblastoma NMB cells to investigate the roles of REST induced by MOR activation in neuronal cells. To determine the effects of morphine on REST expression, we performed RT-PCR, real-time quantitative RT-PCR, western blot analysis and radioligand binding assays in NMB cells. By RTPCR and real-time quantitative RT-PCR, the expression of REST was found to be unchanged by either the MOR agonist morphine or the MOR specific antagonist CTOP. By western blot, morphine was shown to significantly inhibit the expression of REST, but this suppression was completely blocked by treatment with CTOP. In the radioligand binding assay, the overexpression of REST led to an increased opioid ligand binding activity of endogenous MOR in the NMB cells. These results together suggest that morphine inhibits the expression of REST in human neuroblastoma cells through a post-transcriptional regulatory mechanism mediated through MOR.
The nitric oxide(NO) is a major factor contri buting to t he loss of neurons in ischemic st roke. demyelina t ing diseases, and other neurodegenerative di sorders . But it is known that NO is not function ing as a direct neurotoxin. NO combined with superoxide(02-) by the diffusion-contl'O ll ed reaction, formed a peroxin it ri te anion (ONOO-)‘ which this s pecies has been shown to contribute to oxidative s igna ling and damage. ONOO stimuJates apoptosis in many cell types. whether ONOO acts direct ly as an ox idant 0 1' the induction of apoptosis is because of the radicals derived from ONOO- decompositi on . But. the mecha ni sm by which ONOO- induces apoptosis is un clear although subsequent forrnation 0 1' reactive oxygen s pecies(ROS) has been suggested in a few reports The aim of this study is to investigate the a nti -apoptotic pathway by inhibi tion 0 1' ONOO synthesis t hrough scavenging of ROS us ing s pecific wavelength 0 1' light irradiation . The present study investi gated the a nti -apop totic effect of the specific wavelength 0 1' irradi ation in Sodium Nitroprusside(SNP) t reated SJ-I-SY5Y ceJls, by MTT, DNA fragmentation, and flow cytometric assay and th rough western blot and caspase-3, -9 activity assay for confirmation of caspase pathway. Also. NO reJease and ROS leveJ was measured in order to observe the changes of NO involved in radical by Griess reaction analysis and DCF'-DH. Results showed that the cell viability were r educed by about 50% of control group by SNP treatment, but re covered to about 80% by 590nm irradiation . The apoptotic cells were observed by flow cytomet ry and DNA fra g mentation assay in SNP-treated group‘ but 590nm irradiation led apoptotic feature to be reduced . Released NO a nd ROS level were increased after SNP treatment but ROS level was dec reased in 590nm irradi at ion - treated group, in spite of high NO concentration fo llowing SNP treatment Also. SNP t reatment led cytochrom C release but 590nm irraidiation inhibit it, hence the expression 0 1' caspase-3 and -9 was dec reased sign ificantly‘ These results showed that 590nm irradiation protect neuronal death thl'Ough bl ocking of NO-induced mi tochondri al apoptotic pathway. Also, it suggests that specific wavelength of irradi ation was used for prevent ion from neurodegenerative disordcr progression
The purpose 01' pl'esent study was to examine the molecular events in apoptosis by CoCl2, mimicking hypoxic cond ition and recovering effects by LED ir l'adiation on Human SH-SY5Y neuroblastoma cells The SOUl'ce 0 1' light for ir l'adiation was a continuous-wave LED emitting at a wavelenl양h of 590 nm, and manufactured that ene rgy density was 5 mW!cm2 on sample surface, After ir l'adiation, cell viabi lity was measured with BrdU , cell morphol ogy was examined with Diff- Quik staining, cell signaling was monitored with various apoptosis-related molecules using RNase Pl'otection Assay(RPA) , W11en treated with CoC12, apoptotic induction was found in the SH-SY5Y cells in a concentration-dependent and time-dependent manner , Diff-Quik s taining was revealed that DNA fragmentation re presented apoptosis was examined in CoC12-tl'eated group, Moreover, RPA assay of SH-SY5Y cclls lIs ing val'iolls apoptosis-related molecllles showed that the apoptotic cell population was mcreased J-loweve. there was sorne signifïcant change in LED irradiatied cells aftel' treatement of CoC12 The main mechanism for Lhese a poptosis appearecl to be mito c hondriεt - m ecliated pathway, such as cytochrome- c‘ caspase-9, caspase-3, pro-apototic protein ßax, anti-apototic protein Bcl-2, and death receptor• mediated pathway, such as Fas, cas pase- 8, a ncl TNFRl These results demonstrate that CoCI2 induce apoptosis in SH-SY5Y via different dual apop tosis pathway through death receptor pathway as well as mitochondria- dependent pathway and LED irradiation can recl llces the CoCl2-induced apoptosis by blocking their internal signaling pathway