검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 18

        2.
        2024.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Porous graphene oxide (P-GO) was successfully synthesized by using a simple glucose mediated hydrothermal method form prepared graphene oxide (GO). Then the P-GO was characterized by X-ray Powder Diffraction (XRD), Fourier-Transform Infrared (FITR), Raman, Brunauer–Emmett–Teller (BET), Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM) analysis to determine the crystallinity, surface functionality, surface defect, surface area and porous nature of the material. For the comparative properties studies with P-GO, the synthesised GO was also characterised using the aforementioned analytical techniques. The formation of macroporous 2D sheet-like structure of P-GO with pore size diameters of 0.2–0.5 μm was confirmed by FESEM and TEM images. The surface area of P-GO was found to be 1272 m2/ g which is much higher compare to GO (i.e., 172 m2/ g) because of porous structure. P-GO was used for the adsorptive removal of F− ions from water using batch adsorption method. The highest adsorption occurs in the pH range of 5–7 with maximum adsorption capacity of 1272 mg/g. The experimental data revealed that the adsorption process obeys Langmuir monolayer isotherm model. The kinetic analysis revealed that the adsorption procedure is extremely rapid and mainly fit to the Pseudo-second-order (PSO) model. The effect of co-existing ions on fluoride adsorption capacity by P-GO decreases in the following order: PO4 3− > CO3 2− > SO4 2− > HCO3 − > NO3 − > Cl−. The mechanism of adsorption of fluoride onto the P-GO surface includes electrostatic interactions and hydrogen bonding.
        4,200원
        3.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper evaluates the adsorptive removal of sunset yellow (SY) from aqueous solutions using a new magnetic glycodendrimer (MGD). To synthesize the MGD, chitosan dendrons were cultivated on amine-functionalized magnetic graphene oxide. A number of analytical methods were employed to physicochemically characterize the synthesized MGD. Batch adsorption conditions were optimized using the Box–Behnken design. An optimized initial SY content of 633 mg/L, an optimized contact time of 33.37 min, and an optimized pH of 3.72 maximized the MGD adsorption capacity to 485 mg/g. The Langmuir isotherm was employed to describe adsorption equilibrium, while adsorption kinetics was studied via the Lagergren kinetics model. The SY adsorption onto the MGD was thermodynamically found to be spontaneous (ΔG° < 0) and exothermic (ΔH° = – 19.120 kJ/mol), leading to a decreased disorder (ΔS° = – 54.420 kJ/mol) in the solid–liquid interface. The MGD showed reusability and unique magnetic characteristics. It was concluded that the MGD could be a potential alternative for the adsorptive and magnetic removal of SY from an aqueous solution.
        5,500원
        4.
        2023.05 구독 인증기관·개인회원 무료
        Radioactive Oxide is formed on the surface of the coolant pipe of the nuclear power plant. In order to remove the oxide film that is formed on the surfaces of the coolant pipe, chemical and physical decontamination technologies are used. The disadvantage of traditional technologies is that they produce secondary radioactive wastes. Therefore, in this study, the short-pulsed laser eco-friendly technology was used in order to reduce the production of secondary radioactive wastes. It was also used to minimize the damage that was caused to the base material and to remove the contaminated oxide film. The study was carried out using a Stainless steel 304 specimen that was coated with nickel-ferrite particles. Additionally, a transport robot was 3D modeled and manufactured in order to efficiently remove the oxide film from the coolant pipe of the nuclear power plant. The transport robot has a fixed laser head to move inside the horizontal and vertical pipes. The rotating laser head removes the contaminated oxide film on the inner surface of the coolant pipe. In the future, as a condition of the 1064nm short-pulsed laser ablation technique determined by basic analysis, we plan to analyze whether the transport robot is applicable to the radiation contamination site of the nuclear power plant.
        5.
        2023.05 구독 인증기관·개인회원 무료
        It is reported that 48 pressurized heavy water reactors (PHWRs) are in operation, and 10 PHWRs including Wolsong-1 NPP have been permanently shut down in the world. In the case of PHWRs, which have been permanently ceased, they are managed through the delayed decommissioning method, but there are no cases of dismantling. Therefore, technology development is urgent for the effective decommissioning of PHWRs. Unlike PWRs, PHWRs are separated into coolant system and moderator system. Most of pipes and systems of coolant system are mainly composed of carbon steel, expect of the steam generator tubes which are composed of nickel alloy. On the other hand, the moderator system is composed of stainless steel. In the case of stainless steel, the inner layer of the oxide film is composed of chromium oxide, and the outer layer is composed of iron and nickel oxide in enriched. To remove two oxide layers, it is needs to different decontamination method, the coolant system can perform the system decontamination process through a reduction process, but in the case of the moderator system, the oxidation/reduction process is required because it has a material and oxide film similar to PWRs. In this study, this is evaluated the oxide film removal rate according to the type of stainless steel and temperature in order to remove the oxide film deposited in the moderator system. The experiments were carried out at temperatures of 60, 70, 80 and 90°C, with a concentration of 200 ppm of permanganic acid and nitric acid, and 2,000 ppm of oxalic acid, respectively. The results of the oxide film removal rate test for SUS304 showed 29% at 60°C, 38% at 70 and 80°C, and 41% at 90°C. For SUS403, the oxide film removal rate experiment results showed 62% at 60°C, 85% at 70°C, 94% at 80°C, over 99% at 90°C. The results showed that the removal efficiency of the oxide film increased as the temperature increased. Following the results of experimental, the optimum temperature of oxide removal in composed of the stainless steel material is to be 90°C for decontamination of PHWR.
        6.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, UiO-66-NH2 was synthesized and incorporated with graphene aerosol (UiO-66-NH2/GA) and ethylenediamine functionalized graphene oxide (UiO-66-NH2/GO-NH2). These composites were characterized using infrared spectroscopy, powder X-ray diffraction, ultraviolet–visible light spectroscopy, scanning electron microscope, and energy-dispersive X-ray spectroscopy. UiO-66-NH2/GO-NH2 exhibited 93% adsorption of quinoline in 5 h, UiO-66-NH2 and UiO-66-NH2/GA presented 80.4% and 86.5%, respectively. The high adsorption observed on UiO-66-NH2/GO-NH2 was attributed to the unique electronic properties, and hydrogen bonding between the nitrogen atom of quinoline and NH2- phenyl fragment of UiO-66-NH2, and N–H of ethylenediamine. GO also offered combined strong π–π interactions on its surface, and the oxygen coverage (~ 50%) on GO within the structure is responsible for the formation of strong hydrogen bonds with quinoline. Theoretical calculation suggested that UiO-66-NH2/GO-NH2 presented a more favourable adsorption energy (− 18.584 kcal/ mol) compared to UiO-66-NH2 (− 16.549 kcal/mol) and UiO-66-NH2/GA (− 13.991 kcal/mol). These results indicate that nanocomposites have a potential application in quinoline capture technologies in the process of adsorptive denitrogenation.
        4,600원
        7.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the arsenide removal by using mesoporous CoFe2O4/ graphene oxide nanocomposites based on batch experiments optimized by artificial intelligence tools. These nanocomposites were prepared by immobilizing cobalt ferrite on graphene oxide and then characterized using various techniques, including small angle X-ray diffraction, high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy. Artificial intelligence tools associated with response surface methodology were employed to optimize the conditions of the arsenide removal process. The results showed that back propagation neural network combined with genetic algorithm was suitable for the arsenide removal from aqueous solutions by the nanocomposites based on the minimum average values of absolute errors and the value of R2. The optimal values of the four variables (operating temperature, initial pH, initial arsenide concentration, and contact time) were found to be 25.66 °C, 7.58, 10.78 mg/L and 46.41 min, and the predicted arsenide removal percentage was 84.78%. The verification experiment showed that the arsenide removal percentage was 86.62%, which was close to the predicted value. Three evaluation methods (gradient boosted regression trees, Garson method and analysis of variance) all demonstrated that the temperature was the most important explanatory variable for the arsenide removal. In addition, the arsenide removal process can be depicted with pseudo-second-order kinetics model and Langmuir isotherm, respectively. The thermodynamics investigation disclosed that the adsorption process was of a spontaneously endothermic nature. In summary, this study showed that ANN-GA was an efficient and feasible method in determining the optimum conditions for arsenic removal by CoFe2O4/ graphene oxide nanocomposites.
        4,900원
        9.
        2021.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, Ni nanoparticle supported by graphene oxide (GO) (Ni-GO) is successfully synthesized through hydrothermal synthesis and calcination, and Cr(VI) is extracted from aqueous solution. The morphology and structure of Ni- GO composites are characterized by scanning electron microscopy (SEM), trans mission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). High-resolution transmission electron microscopy (HRTEM) and XRD confirms the high dispersion of Ni nanoparticle after support by GO. Loading Ni on GO can obviously enhance the stability of Ni-GO composites. It can be calculated from TGA that the mass percentage of Ni is about 60.67%. The effects of initial pH and reaction time on Cr(VI) removal ability of Ni-GO are investigated. The results indicate that the removal efficiency of Cr(VI) is greater than that of bared GO. Ni-GO shows fast removal capacity for Cr(VI) (<25 min) with high removal efficiency. Dynamic experiments show that the removal process conforms to the quasi-second order model of adsorption, which indicates that the rate control step of the removal process is chemical adsorption. The removal capacity increases with the increase of temperature, indicating that the reaction of Cr(VI) on Ni-GO composites is endothermic and spontaneous. Combined with tests and characterization, the mechanism of Cr(VI) removal by rapidly adsorption on the surface of Ni-GO and reduction by Ni nanoparticle is investigated. The above results show that Ni-GO can be used as a potential remediation agent for Cr(VI)-contaminated groundwater.
        4,000원
        11.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The aim of this work is to investigate the ability of a new functionalized graphene oxide 3-amino-5-phenylpyrazole (F-GO) in the adsorption and removal of Hg2+ from aqueous solution. Both untreated graphene oxide (GO) and F-GO were characterized using FT-IR, EDX, FE-SEM, XRD and TGA analysis. The effects of three operational variables (pH, adsorbent dose and initial metal ion concentrations) on Hg2+ adsorption capacity of F-GO were investigated by central composite design. This technique aims to find a simple way to optimize the adsorption process and to analyze the interaction between the significant parameters. A quadratic model suggested for the analysis of variance found that the adsorption of metal ions heavily depend upon pH of the solution. The adsorption mechanism has been determined by pseudo-first-order kinetic models and the adsorption behavior was modeled by Freundlich isotherm. Results demonstrated that the adsorption capacities of F-GO for removal of Hg2+ were generally higher than those of GO, which is attributed to a decrease in the agglomeration of graphene layers due to the presence of amino-functional moieties with their bulky phenyl groups. Thermodynamic data indicated that the functionalization significantly affects the thermostability of the GO precursor materials. The desorption study demonstrated favorable regenerability of the F-GO adsorbent, even after three adsorption–desorption cycles.
        4,900원
        12.
        2019.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Environmental pollution remains a considerable health risk source all over the world; however, hazards are usually higher in developing countries. Iraq has long been suffering from the problem of pollution and how to treat pollution. Photocatalytic degradation has turned out to be most productive process for dye degradation. In this investigation, Rhodamine B (RhB), dye has been selected for degradation under visible light illumination. To address this issue, we fabricate erbium trioxide nanoparticles (Er2O3/NPs). Erbium trioxide nanoparticles are prepared and utilized for photo-catalytic degradation. The characterization of Er2O3/NPs is described and confirmed by utilizing of XRD (X-ray diffraction) and SEM (Scanning Electron Microscopy). The average size of Er2O3 nanoparticles is observed to be 16.00 nm. Er2O3/NPs is investigated for its ability of photo-catalytic degradation through certain selected parameters such as concentration and time. The methodological results show that the synthesized Er2O3/NPs is a good photo-catalytic for Rhodamine degradation.
        4,000원
        13.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        대기오염물질 중 미세먼지는 심각한 사회적 환경문제로 인식되고 있다. 미세먼지의 원인 물질 중 하나인 질소산화물(NOx)은 석탄화력발전소의 연소공정에서 주로 발생하므로 효율적인 NOx 제거가 필요한 실정이다. 본 연구에서는 선택적 촉매 환원법(Selective Catalytic Reduction, SCR)을 이용한 NOx 제거에서 TiO2 광촉매의 NO 제거효율을 연구하였다. NO 제거효율을 평가하기 위해 발열제가 내장된 Al2O3 기판 표면에 TiO2 촉매와 인산염의 접착 바인더를 혼합하여 도포한 후 제조된 기판을 열처리하면서 실험을 수행하였다. 온도에 따른 촉매의 NO 제거효율을 평가하였고, 촉매의 물리화학적 특성을 위하여 XRD, SEM, TG-DTA, BET 분석을 수행하였다. NOx 제거 효율은 시간에 따른 온도변화(250℃∼500℃) 로 20분에서 제거효율은 58.7%∼65.9%이며, 30분에서 63.7%∼66.0%로 나타났다. 질소산화물 제거용 SCR로 사용되는 TiO2는 300℃가 제거효율이 가장 효율적인 것으로 판단된다.
        4,000원
        17.
        2016.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 비소(arsenic, As) 제거 특성을 가진 망간-철 산화물(manganese-iron oxide, MF)을 제조하고, 이를 poly vinylidene fluoride (PVdF)와 복합화를 진행하여 As(III)와 As(V)를 동시에 제거가 가능한 수처리용 나노섬유복합막 (polymer nanofiber membrane with Mn-Fe, PMF) 제조에 관한 기초 연구를 진행하였다. Transmission electron microscope (TEM) 분석을 통해 MF 소재의 형상 및 구조를 확인하였으며, PMF 복합막의 수처리용 분리막으로의 활용가능성을 조사하 기 위하여 기계적 강도, 기공크기, 접촉각 및 수투과도 분석을 진행하였다. 측정결과로부터 망간과 철 비율이 같은 PMF11 복 합막의 기계적 강도가 가장 높은 결과값(232.7 kgf/cm2)을 나타낸 것을 확인할 수 있었다. 또한, MF 소재의 도입에 따라 기공 크기가 점차 줄어드는 경향성을 확인할 수 있었으며, 특히, 철 산화물의 조성비가 증가할수록 기공크기가 감소하는 경향성을 보여주었다. 수투과도 측정결과 MF 소재의 도입에 따라 PVdF 나노섬유막에 비해 약 10~60% 이상 향상되는 결과를 나타내 었다. 제조된 MF 소재 및 PMF 복합막의 비소 제거 특성평가를 통해 As(III)와 (V)의 동시 제거 가능하며, 특히, MF01 샘플 의 경우 As(III)와 (V)에 각각 93, 68%의 가장 높은 흡착제거율을 나타내었다. 따라서 본 연구에서는 제조된 MF소재 및 PMF 복합막을 통해 수처리용 분리막의 기능성 향상을 위한 기초연구 자료로 활용할 수 있을 것으로 기대된다.
        4,000원
        18.
        2010.02 구독 인증기관 무료, 개인회원 유료
        The potassium permanganate was used for manganese oxide catalyst with various methods and various processes, which manganese oxide wasused for removal of formaldehyde in flow gas. Experiments indicate that these catalyst materials are difference from each other because of raw materials used and pH values in catalysts preparation when used for formaldehyde removal. And when catalyst was prepared by using potassium permanganate and GLU or PEAunder different pH values respectively, it could have good performance in formaldehyde oxidizing purification. In this thesis, when the ratio of potassium permanganate and GLU was 5:1 for catalyst preparation, and 5 mL of nitric acid was added, the formaldehyde elimination efficiency could be maintained at 100% longer than 600 minutes. And when the ratio of potassium permanganate and PEA was 10:1 for catalyst preparation, and 5 mL of nitric acid was added, the formaldehyde elimination efficiency could be maintained at 100% longer than 705 minutes.
        4,200원