검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 140

        4.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        토복령은 우수한 항균, 항산화, 항염증 효능을 가진 소재로 알려져 있다. 이러한 토복령(Smilax china)의 추출물의 기능성을 화장품에 적용하기 위한 기초연구로써 토복령에서 발견되는 플라보노이드인 quercetin, catechin, naringenin의 농도별 경피 투과 특성을 조사할 필요성이 있다. Marzulli의 정의에 적 용한 결과 케르세틴의 Kp 값은 0.1 mg/mL에서 "빠름"으로 분류되었고, 0.2 및 0.4 mg/mL에서 "보통"으로 분류되었다. 특히, 농도가 증가함에 따라 투과 속도가 감소하는 경향이 있었다. 나린제닌의 경우 Flux 값은 각각 0.1, 0.2 및 0.4 mg/mL 농도에서 0.69, 1.07 및 1.42 μg/hr/cm²이었으며, 해당 Kp 값은 각각 6.95, 5.34 및 3.56이었다. 나린제닌의 Kp 값은 모든 농도에서 "보통" 범주에 속하며, 케르세틴과 관찰된 것과 같이 농도가 높아짐에 따라 투과 속도가 감소하였다. 카테킨의 경우 Flux 값은 각각 0.1, 0.2 및 0.4 mg/mL 농도에서 0.75, 1.09 및 1.66 μg/hr/cm²이었으며, 해당 Kp 값은 각각 7.55, 5.46 및 4.16이었다. 카테킨의 Kp 값은 모든 농도에서 일관되게 "보통"으로 분류되었다. 여드름 저해능 및 항염증 효능이 우수 한 토복령 추출물의 유효성분인 quercetin, catechin, naringenin의 경피 투과 특성이 보통 이상으로 나타나 기능성 화장품에 사용할 수 있는 우수한 천연물 소재인 것을 확인할 수 있었다.
        4,000원
        5.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        화장품 소재는 안전성이 무엇보다 중요시된다. 화장품에 사용되는 기존의 보존제인 PE에 대장 균 효소 β–gal을 이용하여 안전성이 증가된 PE-gal을 생합성하였다. 화장품 소재로 사용하기 위해 생합 성된 생성물인 PE-gal의 피부 흡수도를 기존의 보존제인 PE와 비교하기 위해 Franz Diffusion cell Assay 시스템을 이용하여 경피투과도를 측정하였다. 같은 질량농도의 시료를 사용하였을 때 PE의 Flux 값, Kp 값은 시간이 지날수록 증가하는 것으로 나타났으나 PE-gal은 투과도를 측정할 수 있을 만큼 투과되지 못 하였다. 이는 PE의 피부투과도가 생합성된 PE-gal 배당체보다 높다는 것을 나타낸다. Marzulli 등에 따라 Kp 값을 이용하여 투과 정도를 확인하였을 때 PE의 투과속도는 1mg/mL의 농도에서 느림(slow)으로 측정 되었다. 따라서 배당체 형태의 PE-gal은 PE에 비해 경피 투과도가 현저히 낮게 나타났다.
        4,000원
        8.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study aims to analyze and summarize test results related to permeable blocks used for sidewalks and roadways as an alternative to conventional urban road pavement technology, specifically focusing on low-impact development (LID) techniques. Furthermore, it aims to provide reference data on the feasibility of current policy implementation and future policy directions through a longterm analysis of the performance and durability of permeable blocks in sidewalk and roadway construction. METHODS : The research methodology involves (1) conducting a survey on the status and actual conditions of permeability sustainability tests based on the results of permeability persistence tests conducted in Seoul over nine years, from 2013 to 2021; (2) analyzing the differences between the permeability block rating system of Seoul City and that employed by the Ministry of Environment; (3) analyzing the permeability of graded pavement sections in permeable blocks for sidewalks after three years of public use and deriving a regression analysis formula to estimate the maintenance period; (4) analyzing the permeability of pavement sections in permeable blocks for roadways after five years of public use and deriving a regression analysis formula to estimate the maintenance period. RESULTS : This study revealed significant improvements in the performance and quality control of permeable blocks since the implementation of the permeability sustainability test in Seoul in 2013. An analysis of the differences in the permeability coefficient and distribution based on the rating systems of Seoul City and the Ministry of Environment showed that rating system of Seoul City has approximately twice the permeability coefficient quality standard compared to that of the Ministry of Environment. Regression analysis indicated that the firstgrade permeable block was predicted to maintain its permeability for approximately 5.1 years, whereas the third-grade permeable block was predicted to maintain its permeability for approximately 3.1 years. In roadway-permeable block pavements, the first-grade sections maintained excellent quality conditions even after five years, and regression analysis predicted a permeability maintenance period ranging from eight to 17 years. CONCLUSIONS : The correlation analysis of the permeability coefficients based on the common usage period of permeable blocks for sidewalks and roadways presented in this study can provide more accurate estimations of commonality. However, further research under various environmental conditions is required to supplement these findings. Considering the lack of studies on permeable block commonality analysis in Korea, this study highlights the significance of conducting long-term experimental follow-up research to establish commonality prediction formulas for different usage scenarios.
        4,000원
        9.
        2023.05 구독 인증기관·개인회원 무료
        Bentonite has been considered as a potential buffer material in the engineering barriers of highlevel radioactive waste disposal systems. The intrusion of groundwater and heat from the waste change the temperature of the bentonite, which can alter the hydraulic properties of the bentonite. In this study, temperature effects on permeability were observed in two Ca-type bentonites. Laboratory tests were conducted on two types of block that were compacted using Korean Gyeongju bentonite and bentonil-WRK at different dry densities. Permeability tests were conducted at three different temperatures, namely 30°C, 60°C, and 90°C, using deionized water. Moreover, comparison between two Ca-type bentonites is carried out.
        12.
        2022.05 구독 인증기관·개인회원 무료
        To dispose of spent nuclear fuel, the most promising method is disposal in a deep geological repository with a multi-barrier system. Among the multi-barrier system, canisters are used to contain the spent nuclear fuel. A role of the canister is to withstand corrosion load from the deep geological environment as possible as long. Corrosion processes consist of corroding agents transport to the canister surface and electrochemical reactions between the corroding agents and the canister surface. According to previous King’s electrochemical experiments, the mass-transport rate of corroding agents is slower than the electrochemical reaction rate with copper when the canister is surrounded by dense bentonite blocks. Therefore, the mass-transport rate is a rate-determining step for the whole corrosion process. Despite of the importance of transportation of oxidizing agents in bentonite, the transportation process was not paid attention. For example, existing models which are called continuum models assumed that the corroding agents pass through the pore in the porous medium because the continuum model does not consider the fracture networks in the bentonite. Here we develop a dualpermeability and dual-porosity model. In this model, the transport of corroding agents is considered that they pass through fracture within the porous medium. The difference between the dual-permeability and dual-porosity model is whether the corroding agents can pass through the pore. The dual-permeability model assumed that the mass-transport occurs within both fracture and porous medium. On the other hand, the dual-porosity model assumed that the mass-transport occurs only within fractures. Through both models, we found that the transport rate in the fractures is much higher than through the pores, and the canister lifetime at a point where contacting the fracture tip is much shorter than other parts when the canister lifetime is calculated by the transport-governed condition. In addition, the temperature distributions in the fracture are different compared to the existing continuum model. Our results show the effect of fractures in terms of not only corroding agents transport but also the canister lifetime. We anticipate our model to be a first step for the corrosion estimation model coupled with fracture networks.
        19.
        2020.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Many electronic applications require magnetic materials with high permeability and frequency properties. We improve the magnetic permeability of soft magnetic powder by controlling the shape magnetic anisotropy of the powders and through the preparation of amorphous nanoparticles. For this purpose, the effect of the shape magnetic anisotropy of amorphous Fe-B-P nanoparticles is observed through a magnetic field and the frequency characteristics and permeability of these amorphous nanoparticles are observed. These characteristics are investigated by analyzing the composition of particles, crystal structure, microstructure, magnetic properties, and permeability of particles. The composition, crystal structure, and microstructure of the particles are analyzed using inductively coupled plasma optical emission spectrometry, X-ray diffraction, scanning electron microscopy and focused ion beam analysis. The saturation magnetization and permeability are measured using a vibrating sample magnetometer and an LCR meter, respectively. It is confirmed that the shape magnetic anisotropy of the particles influences the permeability. Finally, the permeability and frequency characteristics of the amorphous Fe-B-P nanoparticles are improved.
        4,000원
        1 2 3 4 5