검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2021.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Laser cladding a surface treatment process that grants superior characteristics such as toughness, hardness, and corrosion resistance to the surface, and rebuilds cracked molds; as such, it can be a strong tool to prolong service life of mold steel. Furthermore, compared with the other similar coating processes – thermal spray, etc., laser cladding provides superior bonding strength and precision coating on a local area. In this study, surface characteristics are studied after laser cladding of low carbon steel using 18%Cr-2.5%Ni-Fe powder (Rockit404), known for its high hardness and excellent corrosion resistance. A diode laser with wavelength of 900-1070 nm is adopted as laser source under argon atmosphere; electrical power for the laser cladding process is 5, 6, and 10 kW. Fundamental surface characteristics such as crossectional microstructure and hardness profile are observed and measured, and special evaluation, such as a soldering test with molten ALDC12 alloy, is conducted to investigate the corrosion resistance characteristics. As a result of the die-soldering test by immersion of low carbon alloy steel in ALDC12 molten metal, the clad layer's soldering thickness decreases.
        4,000원
        2.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The longest process in the injection molding process is the cooling process of the molded product. Therefore, shortening the cooling time is key to reducing the injection molding cycle time. For fast cooling time, the production of conformal cooling channels using metal 3D printing instead of the conventional linear cooling channels is continuously increasing. In this study, the cooling effect of the conventional linear cooling channel application and the conformal cooling channel application using metal 3D printing was compared in the design of the back cover molding mold of the circulator that has been widely used recently. The comparison of the cooling effect was based on the mold temperature and the molded product temperature for a certain period of time after completion of molding. It was confirmed that the time required to eject from the mold with the conformal cooling channel to the ejecting temperature of the molded product was reduced by 28.7%, and the maximum temperature of the mold was also reduced by 40%.
        4,000원