본 연구는 국내 냉동보관창고 보관온도에 대한 조사자료를 활용하여, 온도분포를 추정하였고 이를 미생물 위해 평가(microbial risk assessment; MRA)의 입력변수로 활용 할 수 있도록 적정 확률분포 모델을 제시하였다. 조사에 참여한 8곳의 냉동보관창고에서 측정된 공간상의 온도는 최저 -25.8oC, 최고 -10.3oC, 평균 -20.48 ± 3.08oC이었으며, - 18oC이상의 냉동창고 비율은 20.4%로 조사되었다. 공간별 온도분포는 자연대류를 이용하는 냉동창고의 경우 상단 (2.4~4 m) -22.57 ± 0.84oC, 중단(1.5~2.4 m) -22.49 ± 1.05oC, 하단(0.7~1.5 m) -22.68 ± 1.03oC, 최고온도차이는 1.78oC이 었으며, 강제대류를 이용하는 냉동창고의 온도분포는 상단 (2.4~4 m) -17.81 ± 1.47oC, 중단(1.5~2.4 m) -17.94 ± 1.44oC, 하단(0.7~1.5 m) -18.08 ± 1.42oC, 최고온도차이는 0.94oC로 조사되었다. 보관온도는 냉동창고 모든 공간에서 온도가 일정하게 유지되는 것이 아니라 편차가 존재하는 것으로 나타났다. 이상의 수집된 온도자료는 @RISK를 이용, 적합성 검정(GOF: A-D, K-S test)을 수행하여, MRA에서 활용할 수 있는 국내 냉동보관창고 온도분포에 대한 가장 적합한 확률분포모델로 Lognormal [5.9731,3.3483, shift(-26.4281)] 이 선정하였다.
It was confirmed that the extreme value distribution model applies to probability of exceeding more than once a day monthly the facility capacities using data of daily maximum inflow rate for 7 wastewater treatment plant. The result of applying the extreme value model, A, D, E wastewater treatment plant has a problem compared to B, C, F, G wastewater treatment plant. but all the wastewater treatment plant has a problem except C, F wastewater treatment plant based 80% of facility capacity. In conclusion, if you make a standard in statistical aspects probability exceeding more than once a day monthly can be ‘exceed day is less than a few times annually’ or ‘probability of exceeding more than once a day monthly is less than what percent’.
This study was to present the proper probability distribution models that based on the data for surveys of food cold storage temperatures as the input variables to the further MRA (Microbial risk assessment). The temperature was measured by directly visiting 7 food plants. The overall mean temperature for food cold storages in the survey was 2.55 ± 3.55oC, with 2.5% of above 10oC, −3.2oC and 14.9oC as a minimum and maximum. Temperature distributions by space-locations was 0.80 ± 1.69oC, 0.59 ± 1.68oC, and 0.65 ± 1.46oC as an upper (2.4~4 m), middle (1.5~2.4 m), and lower (0.7~1.5 m), respectively. Probability distributions were also created using @RISK program based on the measured temperature data. Statistical ranking was determined by the goodness of fit (GOF) to determine the proper probability distribution model. This result showed that the LogLogistic (−4.189, 5.9098, 3.2565) distribution models was found to be the most appropriate for relative MRA conduction.
This study applied the Bayesian method for the quantification of the parameter uncertainty of spatial linear mixed model in the estimation of the spatial distribution of probability rainfall. In the application of Bayesian method, the prior sensitivity analysis was implemented by using the priors normally selected in the existing studies which applied the Bayesian method for the puppose of assessing the influence which the selection of the priors of model parameters had on posteriors. As a result, the posteriors of parameters were differently estimated which priors were selected, and then in the case of the prior combination, F-S-E, the sizes of uncertainty intervals were minimum and the modes, means and medians of the posteriors were similar to the estimates using the existing classical methods. From the comparitive analysis between Bayesian and plug-in spatial predictions, we could find that the uncertainty of plug-in prediction could be slightly underestimated than that of Bayesian prediction.
자연하천에서의 이송-확산 과정의 모의를 위하여 입자위치의 이산확률분포에 기초한 2차원 수송 모형을 개발하였다. 제안된 모형에서는 단위 시간간격동안 격자간의 질량이송을 예측하기 위하여 평균과 분산의 함수로 나타내어진 확률분포를 사용하였다. 개발된 모형은 유속, 확산계수, 단면적이 일정한 단순영역에 대하여 수치확산이 없는 해를 구하였고, 양의 확률을 만족시키는 안정조건이 성립한다면, 해석해와 다른 유한차분법과 비교하였을 때, 좋은 결과를 나타내었다. 본 모