벗초파리(Drosophila suzukii)는 베리류 작물, 체리, 포도 등에 심각한 수확량 손실을 입히는 해충이다. 잘 알려진 훈증제인 phosphine (PH3)과 ethylformate (EF)를 저온과 병합처리 하면 벗초파리의 살충효과가 상승되는데 그 원인을 규명하고자 본 연구에서는 TUNEL assay 를 이용한 apoptosis 분석과 이차원 전기영동(2DE) 및 MALDI-TOF/TOF를 통한 벗초파리 체내 단백질 변화를 분석하였다. Apoptosis 분 석 결과, 저온과 훈증제 복합 처리구, 각각의 훈증제와 저온 단독 처리구 순으로 apoptosis가 강한 경향을 보였다. 단백질 발현 분석 결과, 약 800 개의 spot이 관찰되어 그 중 가장 변화가 큰 42개의 spot을 동정한 결과, cathepsin D과 heat shock protein 83이 훈증제와 저온 복합처리군에 서 발현이 현저히 증가했다. 이러한 결과는 훈증제와 저온 복합처리에 의한 벗초파리의 살충효과 상승작용에 대한 생리학적 변화를 확인하는 중 요한 지표가 될 수 있다.
Aluminum (Al) is one of the major factors adversely affects crop growth and productivity in acidic soils. In this study, the effect of Al on plants in soil was investigated by comparing the protein expression profiles of alfalfa roots exposed to Al stress treatment. Two-week-old alfalfa seedlings were exposed to Al stress treatment at pH 4.0. Total protein was extracted from alfalfa root tissue and analyzed by two-dimensional gel electrophoresis combined with MALDI-TOF/TOF mass spectrometry. A total of 45 proteins differentially expressed in Al stress-treated alfalfa root tissues were identified, of which 28 were up-regulated and 17 were down-regulated. Of the differentially expressed proteins, 7 representative proteins were further confirmed for transcript accumulation by RT-PCR analysis. The identified proteins were involved in several functional categories including disease/defense (24%), energy (22%), protein destination (9%), metabolism (7%), transcription (5%), secondary metabolism (4%), and ambiguous classification (29%). The identification of key candidate genes induced by Al in alfalfa roots will be useful to elucidate the molecular mechanisms of Al stress tolerance in alfalfa plants.
In porcine production, porcine litter size is a quantitative trait and its heritability is especially low. So it is necessary to identify porcine reproductive gene and protein. The establishment of pregnancy requires performance of a receptive endometrium and ovary. The endometrium and ovary go through transformations in response to physiological changes initiated by local factors including ovarian hormones and uterine environment that make it for possible pregnancy. The endometrium and ovary secrete a wide array of growth factors, cytokines and proteins. Based on these background, we analyzed the endometrial tissue protein of porcine and would find out biomarker proteins related to porcine litter size.
We sorted the two groups according to litter size of porcine: a small litter size group (SLSG) (n=2) and a large litter size group (LLSG) (n=2). The porcine endometrial tissue and ovary samples were preprocessed for proteomic analysis. In order to comparison, samples of each 2mg endometrium protein and ovary protein were separated form pI and molecular weight in the same conditions by applying a pH 3.0-10.0 IPG gels for the first dimension and then 8-16% SDS-PAGE gel for the second dimension. After proteins were visualized by staining with Commassie brilliant blue (CBB), image analysis was performed with Image Master detect variations in protein spots between large litter size group and small litter size group endometrium. And then differential proteins were identified using MALDI-TOF analysis.
The master images of 2-DE gel images obtained from 2mg samples of large litter size group and small litter size group endometrial proteins at pH 3.0-10.0 revealed more than 400 protein spots in pH 3.0-10.0 range. When we analyzed the levels of expression of proteins that protein spots appeared more than 1.5-fold difference in endometrial tissue from porcine.
In comparison of SLSG(small litter size group) with LLSG(large litter size group), a total of 18 protein spots differentially expressed on porcine endometrial tissue 2-DE gels, among which 9 spots were up-regulated proteins as retinol dehydrogenase 16-like isoform 1, Acrosin-binding protein, alpha-N-acetylgalactosaminidase. phosphoglycerate kinase 2, Acrosin-binding protein in LLSG. And 8 spots were up-regulated proteins as phosphoglycerate kinase 2, prenylcysteine oxidase in SLSG.
Porcine litter size is a quantitative trait and its heritability is especially low. So it is necessary to identify porcine reproductive gene and protein. The establishment of pregnancy requires performance of a receptive endometrium. We analyzed the endometrial tissue protein of porcine and would find out biomarker proteins related to porcine litter size. We sorted the two groups according to litter size of porcine: a small litter size group (SLSG) (n=2) and a large litter size group (LLSG) (n=2). The porcine endometrial tissue samples were analyzed separately using 2-dimensional electrophoresis (2-DE) within the isoelectric point ranges of 3.0 to 10.0, and then differential proteins were identified using MALDI-TOF analysis. In comparison of SLSG(small litter size group) with LLSG(large litter size group), a total of 9 protein spots differentially expressed on porcine endometrial tissue 2-DE gels, among which 5 spots were up-regulated proteins as retinol dehydrogenase 16-like isoform 1, Acrosin-binding protein, alpha-N-acetylgalactosaminidase. phosphoglycerate kinase 2, Acrosin-binding protein in LLSG. And 4 spots were up-regulated proteins as phosphoglycerate kinase 2, prenylcysteine oxidase in SLSG.
High reproductive efficiency is a prerequisite for dairy animals in order to optimize dairy production. An accurate and early pregnancy diagnosis is a crucial aspect for better reproductive management in livestock. The indigenous, visual and clinical methods have various limitations including accuracy, sensitivity, specificity, later stages of applicability and requires highly skilled manpower. This hurdles the researchers to ensue further research on developing novel early pregnancy diagnostics for dairy animals. However, the advantage of molecular techniques like proteomics has given a new hope to look for pregnancy biomarkers in animal research. In this study, we assayed the pregnancy-associated glycoprotein (PAG) levels using anti-bPAG antibody. Serum plasma samples were collected 30, 60, 90 and 120 days after insemination. Cattle diagnosed pregnant with singleton are used for this experiment in which blood samples were collected. The plasma PAG level is gradually increased after insemination to until 60 days and drastically decreased after that. The PAG level was approximately 2-fold greater during 30 days compared with 60 days. These results concluded to validate our other pregnancy diagnosis methods including circulating microRNA and cell free DNA concentration (data not shown). Despite this proteomic approach, validating all other molecular technique results may give the exact time for early pregnancy diagnosis.
During tick infestation, the tick secretes bioactive substances that modify the host’s physiological and immunological reactions. The study of tick saliva is important to understand tick biology as tick saliva plays a special physiological role in pathogen transmission. The average salivary protein concentration was found to be 0.169 μg/μl/tick and saliva secretion decreased with increased time of tick detachment from the host. Saliva secretion volume increased to 3.56 μl in the group of ticks with a body weight between 301–350 mg as compared to higher and lower body weight groups. On-chip-electrophoresis results show 13 distinct bands ranging from 9.9 to 294 kDa. For salivary protein LC-MS/MS was performed. A total of 135 tick salivary proteins were identified of which 30 proteins were found exclusively in fully engorged nymph saliva, 74 in fully engorged adult females, and 31 were detected in both stages. Results of this may help researchers to identify tick proteins as potential candidates for further studies aimed to develop novel tick control strategies to affect both the ticks and the pathogens transmitted by them.
In order to reveal the aluminum (Al) stress tolerance mechanisms in alfalfa plant at low pH soil, a proteomic approach has been conducted. Alfalfa plants were exposed to Al stress for 5 days. The plant growth and total chlorophyll content are greatly affected by Al stress. The malondialdehyde (MDA) and H2O2 contents were increased in a low amount but free proline and soluble sugar contents, and the DPPH-radical scavenging activity were highly increased. These results indicate that antioxidant activity (DPPH activity) and osmoprotectants (proline and sugar) may involve in ROS (H2O2) homeostasis under Al stress. In proteomic analysis, over 500 protein spots were detected by 2-dimentional gel electrophoresis analysis. Total 17 Al stress-induced proteins were identified, of which 8 protein spots were up-regulated and 9 were down-regulated. The differential expression patterns of protein spots were selected and analyzed by the peptide mass fingerprinting (PMF) using MALDI-TOF MS analysis. Three protein spots corresponding to Rubisco were significantly down-regulated whereas peroxiredoxin and glutamine synthetase were up-regulated in response to Al stress. The different regulation patterns of identified proteins were involved in energy metabolism and antioxidant / ROS detoxification during Al stress in alfalfa. Taken together, these results provide new insight to understand the molecular mechanisms of alfalfa plant in terms of Al stress tolerance.
Peroxiredoxin Ⅱ (Prdx Ⅱ; a typical 2-Cys Prdx) has been originally isolated from erythrocytes, and its structure and peroxidase activity have been adequately studied. Prdx Ⅱ has been reported to protect a wide range of cellular environments as antioxidant enzyme, and its dysfunctions may be implicated in a variety of disease states associated with oxidative stress, including cancer and aging-associated pathologies. But, the precise mechanism is still obscure in various aspects of aging containing ovarian aging. Identification and relative quantification of the increased proteins affected by Prdx Ⅱ deficiency may help identify novel signaling mechanisms that are important for oxidative stress-related diseases. To identify the increased proteins in Prdx Ⅱ—/— mice, we performed RBC comparative proteome analysis in membrane fraction and cytosolic fractions by nano-UPLC-MSE shotgun proteomics. We found the increased 86 proteins in membrane (32 proteins) and cytosolic (54 proteins) fractions, and analyzed comparative expression pattern in healthy RBCs of Prdx Ⅱ+/+ mice, healthy RBCs of Prdx Ⅱ—/— mice, and abnormal RBCs of Prdx Ⅱ—/— mice. These proteins belonged to cellular functions related with RBC lifespan maintain, such as cellular morphology and assembly, cell-cell interaction, metabolism, and stress-induced signaling. Moreover, protein networks among the increased proteins were analyzed to associate with various diseases. Taken together, RBC proteome may provide clues to understand the clue about redox-imbalanced diseases.
본 연구는 간척지에서 재배가 가능한 내염성 보리 품종육성을 위한 기초정보를 얻고자 겉보리 두 품종을 대상으로 생육초기 염 스트레스에 따른 생리적 반응과 잎 프로테옴의 발현양상 변화를 분석한 결과는 아래와 같다.
1. 토양의 염 농도가 증가함에 따라 보리의 건물중은 무처리구에 비해 유의적으로 감소하는 경향이었으며, 상록보리는무처리구에 비해 건물중 감소가 작았으며, 선우보리는 컸다.
2. 염처리에 따른 잎의 엽록소 함량을 나타내는 SPAD 값은상록보리가 57.6으로 47.6인 선우보리보다 높았으며, Na+의 함량은 선우보리에서 유의적으로 높았고, K+/Na+의 비율은 상록보리에서 높은 경향을 보였다.
3. 이차원전기영동에 의하여 염 스트레스에 의한 잎 프로테옴의 발현양상을 분석한 결과 47개 단백질 spot이 발현양의차이를 나타냈다. 품종별로 발현양이 증가한 단백질 spot은 상록보리와 선우보리에서 각각 17개와 14개로 나타났고, 발현양이 감소한 단백질 spot은 상록보리와 선우보리에서 각각 28개및 27개로 확인되었다.
4. 염처리에 따른 발현양의 차이를 보이는 18개 단백질을 동정한 결과 ribosomal protein 등 기능과 스트레스와의 관련성이 보고된 10개의 단백질과 ankyrin repeat domain protein등 스트레스 조건에서의 역할이 명확하지 않은 4개의 단백질및 Os02g0753300 등 기능 및 스트레스와의 관련성을 알 수없는 2개의 단백질이 동정되었다.
Peroxiredoxin II (Prdx II; a typical 2‐Cys Prdx) has been originally isolated from erythrocytes, and its structure and peroxidase activity have been adequately studied. Mice absent to Prdx II proteins had heinz bodies in their peripheral blood, and morphologically abnormal cells were detected in the dense red blood cell (RBC) fractions, which contained markedly higher levels of reactive oxygen species (ROS). In this study, a labeling experiment with the thiol‐modifying reagent biotinylated iodoacetamide (BIAM) in Prdx I‒/‒ mice revealed that a variety of RBC proteins were highly oxidized. To identify oxidation‐sensitive proteins in Prdx II‒/‒ mice, we performed RBC comparative proteome analysis in membrane and cytosolic fractions by nano‐UPLC‐MSE shotgun proteomics. We found oxidation‐sensitive 54 proteins from 61 peptides containing cysteine oxidation, and analyzed comparative expression pattern in healthy RBCs of Prdx II+/+ mice, healthy RBCs of Prdx II‒/‒ mice, and abnormal RBCs of Prdx II‒/‒ mice. These proteins belonged to cellular functions related with RBC lifespan maintain, such as cytoskeleton, stress‐induced proteins, metabolic enzymes, signal transduction, and transporters. Furthermore, protein networks among identified oxidation sensitive proteins were analyzed to associate with various diseases. Consequently, we expected that RBC proteome may provide clues to understand redox‐imbalanced diseases.
This study investigated the adverse effects of sound treatment on physiological processes of the American leafminer, Liriomyza trifolii, during several developmental stages. Larval feeding activity was analyzed by measuring feeding tunnel length. It was significantly suppressed by sound treatment (5,000 Hz, 95 dB). Sound treatment delayed the pupal period at 315 - 5,000 Hz and prevented adult emergence at 1,000 - 5,000 Hz. Female oviposition was also inhibited by the stress sound treatments. However, phototactic adult movement was not affected by sound treatment. Pupae treated with 5,000 Hz showed marked changes in protein pattems analyzed by two dimensional electrophoresis. MALDI-TOF analysis of specific protein spots indicated that trafficking protein particle complex I, triosephosphate isomerase, hypothetical protein TcasGA2_TC013388, polycystin-2, paraneoplastic neuronal antigen MAl, and tropomyosin I (isoform M) were predicted in the control insects and disappeared in the insects treated with sound. By contrast, DOCK9, cytoskeletal keratin II, and F0F1-ATP synthase beta subunit were predicted only in the sound-treated insects. Furthermore, stress sound significantly increased the susceptibility of L. trifolii to insecticides. These results suggest that physiological processes of L. trifolii are altered by sound stress, which may be exploited to develop a novel physical control tactic against L. trifolii.
프로테오믹스 기법을 이용하여 벼 고온 스트레스 관련 단백질을 분리 동정하기 위하여 에서 고온처리한 벼의 줄기로부터 단백질을 분리하였다. 분리한 단백질로부터 Rubisco 단백질을 제거하기 위해 15% PEG fractionation을 실시한 후 상등액 분획의 단백질을 이차원전기 영동한 후, CBB 염색을 통해 차별적 발현을 보이는 단백질을 분석하였다. 총 46개의 단백질 spot이 발현양에 변화를 보였으며, 그 중 24개의 단백질이 고온 스트레스에 의해