Pumpkin (Cucurbita moschata Duch.) seed is rich in protein and sulfur-containing amino acids. Tofu is a protein gel made from soybean, which is rich in lysine but lacking in sulfur-containing amino acids. This study was conducted to investigate the use of pumpkin seeds in tofu manufacture and to determine its quality and texture characteristics. Soybean was substituted with pumpkin seed to obtain pumpkin seed tofu at the following ratios: 10%, 30%, 50%, and 70% (P10, P30, P50 and P70). Tofu manufactured only with soybean was used as a control (Con). The higher rate of pumpkin seed substitution significantly decreased the moisture content and yield rate (p<0.05). In contrast, pH value and turbidity were significantly increased with the increase in the amount of pumpkin seed (p<0.05). The L-value (81.74~79.04), a-value (-0.19~-3.89) and b-value (12.40~9.84) of samples significantly decreased with the amount of pumpkin seed (p<0.05). No significant difference in syneresis was found among the samples (p<0.05). The hardness tended to decrease with the increase in the amount of pumpkin seed. The microstructure analysis revealed that the pore size of pumpkin seed tofu was smaller than that of Con. These results suggest that the pumpkin seed protein is a useful ingredient in the manufacture of tofu. Increasing the pumpkin seed substitution levels improves the texture of tofu.
The aim of this study is to evaluate the estrogenic activity of Cucurbita pepo seed extract which includes β-sitosterol and other phytosterols. Sample was extracted from Cucurbita pepo seed by supercritical carbondioxide method and resuspended with ethanol. Estrogenic activity was measured by recombinant yeast assay which detects estrogenic activity using recombinant yeast with high level of estrogenic receptor. However, estrogenic activity of pumpkin seed extract was not found in this study. Based on this data, pumpkin seed extract will not cause estrogenic disturbance.
호박씨는 단백질과 지방의 함량이 높고 영양가치가 높아 식품가공 재료로서 널리 이용될 수 있으나 그 동안 과자, 스넥 제품 등의 단순가공 소재로서 이용되어 왔다. 그러므로 호박씨의 소비를 증진시키고 새로운 기능성 식품을 개발하기 위하여 호박씨를 발아 성장시키면서 각 부위의 일반영양성분, 지방산, 아미노산, L-ascorbic acid, -carotene의 함량변화를 측정하여 영양학적 가치를 평가하였으며, 발아 성장과정 중 생성되는 고미성분의 구조를