Vitamin A, particularly all-trans retinol is excellent for anti-aging but is sensitive to oxygen, heat and light and has low solubility in water. In this study, retinol was encapsulated within oil-in-water (O/W) emulsion, protein-based particle and cycloamylose(CA). And then, it confirms that retinol contained in each delivery system is stable to UV, pH, and temperature and finally measures bioaccessibility.
O/W emulsion was compared according to the type and concentration of emulsifier. UV stability of retinol increased with increasing oil concentration. More than 10 wt% of oil was required to maintain stable retinol (50% residual after 24 hours of irradiation). Using anionic emulsifier, retinol had unstable storage stability regardless of oil concentration and temperature.
Protein based particle was compared according to the type of stabilizer and polysaccharide. UV stability of retinol was highest in pectin-coated particles. However, 20% retinol remains after 6 hours of irradiation and is vulnerable to UV compared to other delivery systems. In pH stability, pectin-coated particles also stably retained retinol.
Inclusion complex of retinol and CA was compared according to the concentration of CA. When CA was used, the residual amount of retinol to UV was high (50% residual after 24 hours of irradiation) regardless of the concentration of the host molecule. In the case of storage stability, retinol remained significantly higher regardless of temperature when cycloamylose was used.
It was finally confirmed bioaccessibility each of retinol delivery system. O/W emulsion was determined by emulsifier type, protein-based particle by coating agent, and inclusion complex by CA concentration. All O / W emulsions retained more than 50% retinol, protein based particles retained more than 80% retinol, and inclusion complex retained more than 70% retinol. The bioaccessibility of pure retinol is about 20%. This study provides important information for designing effective delivery systems for improving the stability of retinol.
Retinol is a type of vitamin A that helps the skin's epidermal cells maintain their original function and plays an important role in visual acuity. However, retinol cannot simply be incorporated into foods in its pure form because of limited solubility and chemical instability. In this study, retinol was encapsulated within lipid droplets of oil-in-water (O/W) emulsion and the photo stability of retinol loaded in O/W emulsion was examined. O/W emulsions containing retinol were prepared using Tween 20, Decaglycerine myristate and WPI, respectively, at different oil concentrations (0.1, 0.5, 1.0, 2.0, and 4.0 wt%). Photo stability of retinol was determined by measuring retention rate (%) of retinol loaded in O/W emulsions after exposure to UV light for 24 h and compared to that of retinol dissolved in ethanol. The retinol retention rate was higher for O/W emulsions than retinol in ethanol and the retention rate increased as the oil concentration of emulsions increased, which might be attributed to the opaqueness of emulsions. As the oil concentration of emulsions increased, the turbidity of emulsions also increased. In terms of the type of emulsifier, decaglycerine myristate-stabilized emulsion had the highest retinol retentions rate than other emulsifier-stabilized emulsions after exposure to UV light. This study provides important information for designing effective emulsion-based delivery systems for improving the stability of retinol.
본 연구는 돼지 수정란의 체외 성숙 및 체외 배양액의 retinol 첨가 효과를 규명하기 위하여 체외 성숙 및 체외 배양액에 retinol을 첨가하여 수정란의 체외 발달에 미치는 영향을 구명하고자 수행되었다. 체외 성숙 배양액에 retinol을 첨가한 결과 성숙율은 으로 각 처리구 간의 유의적인 차이가 없었다(p>0.05). 체외 수정 후 배반포로의 발달율은 첨가구에서 의 발달율을 나타내어 타 처리구에 비하여 유의적으로(p<0.05) 높게 나타났으며,
레티놀 결합 단백질(retinol-binding protein, RBP)은 고등 척추동물에서 혈류를 통해 특이적으로 레티놀을 표적세포에 운반해 주는 중요한 역할을 한다. 우리나라의 연안에 서식하고 있으며 산업적으로 중요한 조피볼락(Sebastes schlegeli)을 대상으로 4-nonylphenol(NP)가 RBP mRNA 발현에 미치는 영향을 구명하기 위해 간으로부터 cDNA library를 제작하고 RBP 단편의 염기서열을 분석하였다. 분석된 RB