Caffeic acid O-methyltransferase (COMT) methylates N-acetylserotonin into melatonin; that is, it has N-acetylserotonin O-methyltransferase (ASMT) activity. The ASMT activity of COMT was first detected in Arabidopsis thaliana COMT (AtCOMT). To confirm the ASMT activity of COMT in other plant species, we evaluated the ASMT activity of a COMT from rice (Oryza sativa) (OsCOMT). Purified recombinant OsCOMT protein from Escherichia coli was used to validate the high ASMT activity of OsCOMT, similar to that of AtCOMT. The Km and Vmax values for the ASMT activity of OsCOMT were 243 μm and 2,400 pmol/min/mg protein, which were similar to those of AtCOMT. Similar to AtCOMT, OsCOMT was localized in the cytoplasm. In vitro ASMT activity was significantly inhibited by either caffeic acid or quercetin in a dose-dependent manner. Analogously, in vivo production of melatonin was significantly inhibited by quercetin in 4-week-old detached rice leaves, suggestive of a positive role of COMT in melatonin biosynthesis in plants.
New QTLs were identified for high grain yield with long panicle in rice. A total of 137 F15 recombinant inbred lines (RILs) derived from a cross between Dasanbyeo (Tongil) and TR22183 (japonica), together with the parents were evaluated for 16 agronomic traits at IRRI in dry and wet seasons under different phosphorus (P) and irrigation conditions. A linkage map was constructed using 236 polymorphic markers in 384-plex Bead Xpress indica-japonica single nucleotide polymorphism (SNP) platform. P and water effects were significant in both wet and dry seasons. Both parents and RILs showed varying degree of sensitivities to scarcities in water and phosphorus in terms of panicle length. Collocating with 20 yield-related QTLs, the panicle QTLs on chromosomes 1 (pl01) ,2 (pl02), 9 (pl09), and 11 (pl11) under low P and rainfed conditions were identified. RILs with TR22183 allele at pl11 showed longer panicle length under low P input rainfed condition in dry and wet seasons. The whole-genome sequences of the two varieties are being compared to design the molecular markers for fine-mapping and candidate gene identification. Based on Nipponbare MSU 7.0 annotation, a total of 1464 genes with predicted function were identified within the four QTL regions. Candidate genes identified in other studies for QTLs under low P and water conditions, such as calmodulin and dehydrin genes, were targeted for designing molecular markers for fine-mapping and expression analysis. Pyramiding the panicle length QTLs correlating with yield QTLs will provide an opportunity of improving yield traits.
IL-34 (NIL) developed by introgressing chromosomal segment substitution from an accession of Oryza minuta (2n=48, BBCC, Acc. No. 101141) into the O. sativa subsp. japonica cv. Hwaseongbyeo, showed significantly higher number of spikelets per panicle (SSP) than the recurrent parent Hwaseongbyeo. QTL analysis in F2 generation derived from the cross between IL-34 and Hwaseongbyeo revealed that ssp7, a QTL was located in the pericentromeric region of chromosome 7. The frequency distribution of spikelets per panicle followed 3:1 ratio for single locus segregation. The additive effect of the O. minuta allele at the QTL was 23 spikelets per panicle, and 43.6% of the phenotypic variance could be explained by the segregation of marker RM21596. To clarify whether ssp7 could be dissected genetically, we carried out fine-scale mapping with 3,700 F2 plants derived from the cross between IL-34 and Hwaseongbyeo using markers flanking spp7. 186 F2 plants having informative recombination breakpoints within the region flanked by two SSR markers RM500 and RM21615 were identified and used for fine mapping of ssp7. ssp7 was mapped between the SSR markers RM21596 and RM418 which was approximately 441kb in length based on the physical map of the region. Of great interests, the QTL region also had effects on primary branch number (PB), grains per panicle (SP) and grain yield (YD). These results are very useful for transferring or pyramiding ssp7 by molecular marker assistant selection in rice breeding programs.
Cold tolerance at every growing stage of rice(Oryza sativa L.) is one of the main determinations for the stable growth in temperature and high elevate area. In the current study, a 181 lines of BC population derived from a cross of Gayabyeo, a Tongil type sensitive to cold and Chhamrong a tolerant to cold were evaluated for cold tolerance with cold water irrigation(17℃) at seeding stage as well as low temperature germinate at 13℃, respectively. The resulting linkage map consists of 157 marker loci, covering all of 12 rice chromosomes and spanning 910cM(Haldane function) with an average interval of 76cM between markers. Three main-effect QTLs were identified. The comparison of the OTLs identified in this cold treatments resulted in an intriquing finding that each treatments were controlled by a major QTL. The QTL qCWI-4 on chromosome 4 was found to increase its additive effect to -0.84 as the cold water irrigate stress was given. In the meanwhile, the QTL qLTG-8 was detected with a LOD score of5.54, explaining up to 13% of the phenotypic variation controlled by Gayabyeo allele. In addition, the QTL qLTGV-3, controlled by Gayabyeo allele with a LOD score of 5.19 explaining about 12.5% of the variation was also identified. These results would favor our better understanding of the genetic control of cold tolerance in rice and be important for the development of rice cultivars with a broaden climatic adaptation.
Cold sensitivity has been shown to vary and the cold tolerance from vegetative to reproductive stage appears to be independent during the life cycle. In the current study, cold tolerance under high elevation rice growing area were evaluated using F4 generation of 181 lines derived from Gayabyeo*2/Chhamrong. Five main-effect QTLs related to days to heading, panicle exertion and spikelet fertility were identified. The QTL qDH-3 on chromosome 3 showed the peak LOD score of 6.3, explaining up to 16.5% of phenotypic variation with additive effect of -2.6. Moreover, the QTL qPE-3 and qSF-3 on chromosome 3 were coincided with the QTL qDH-3 showing an opposite allele effects. Thus, the region harboring marker RM523-RM14281 could be helpful for the selection of cold tolerance genotypes in marker assisted selection(MAS) of rice breeding program.
Wild rices are an important source of useful genes for resistance to diseases, insect pests, tolerance to abiotic stresses and yield increase. Interspecific hybrids were successfully produced between ten accessions of O. minuta (2n=48, BBCC) and O. sativa