In the United States, seismic design standards are crucial in classifying buildings into Risk Categories I to IV. These categories are based on the buildings' occupancy type and the potential risk they pose to public safety, the protection of human life, and the socioeconomic consequences of structural collapse in the event of an earthquake. As the risk category increases, a higher seismic importance factor and more stringent drift limits are imposed on the respective building. This results in enhanced lateral strength and stiffness of the seismic force-resisting system. This study, which compares the seismic demands of special moment frame buildings assigned to high-risk categories, focusing on static system overstrength, ductility, and collapse risk, provides practical insights for structural engineers and architects. For this purpose, nonlinear static and dynamic analyses are performed to quantify the seismic demands of 18 steel frame buildings assigned to Risk Categories II, III, and IV. The findings indicate that buildings in Risk Category II do not meet the target collapse risk of 1% in 50 years, as specified in ASCE/SEI 7. For buildings in higher risk categories, the equivalent lateral force method for estimating seismic base shear is deemed more effective in ensuring adequate seismic performance.
Existing old reinforced concrete buildings could be vulnerable to earthquakes because they were constructed without satisfying seismic design and detail requirements. In current seismic design standards, the target collapse probability for a given Maximum Considered Earthquake (MCE) ground-shaking hazard is defined as 10% for ordinary buildings. This study aims to estimate the collapse probabilities of a three-story, old, reinforced concrete building designed by only considering gravity loads. Four different seismic design categories (SDC), A, B, C, and D, are considered. This study reveals that the RC building located in the SDC A region satisfies the target collapse probability. However, buildings located in SDC B, C, and D regions do not meet the target collapse probability. Since the degree of exceedance of the target probability increases with an increase in the SDC level, it is imminent to retrofit non-ductile RC buildings similar to the model building. It can be confirmed that repair and reinforcement of old reinforced concrete buildings are required.
The purpose of this study is to estimate the weighting factor on inspection categories for risk assessment of buildings. For the purpose, survey of practitioners and experts conducted. By A.H.P.(Analytic hierarchy process), relative weighting factor in inspection categories were estimated.