PURPOSES: The purpose of this study is to research the influence of road traffic noise by road slope through the analysis of the field road traffic noise and determine consideration of road slope in the case of appling active noise cancellation. METHODS: This study measures vehicle's noise by the NCPX method at the three field sections such as uphill, downhill, and flatland. Total sound pressure and sound pressure level by the 1/3 octave band frequency are calculated through the raw field data. Total sound pressure level is compared by ANOVA test and T test statistically. The results obtained are compared in accordance with the road slope and the progress of the uphill section. RESULTS : The noise characteristic of early, medium, and last parts of uphill was found to be consistent when the vehicle was travelling uphill section. The result of statistical test, it was shown that total sound pressures are not different each other. According to the comparison by the geometry, sound pressure of the uphill section was higher than those of the flatland and downhill section in high frequency band. By the result of statistical test, total sound pressure are different according to geometry in the case of high vehicle speed. In the comparison result by road slope, each sound pressure level was found to be consistent in total frequency. However, total sound pressure proportionally increased according to road slope. CONCLUSIONS: It is found that the effect of road slope on noise generation was little in this experimental sites.
도로의 평면 선형은 도로의 안정성과 교통 용량과 관계가 깊다. 도로의 효율적인 유지 관리와 기준에 대한 적합성 평가를 위해서는 도로의 평면 선형을 정확하게 분석하는 방법이 필요하다. 최근 Lidar자료나 GPS를 이용한 도로의 평면 선형 연구가 진행되고 있으나 넓은 지역에서의 평면 선형 곡선 반경을 분석하기에는 여러 가지 문제점을 가지고 있다. 본 연구에서는 수치지형도의 도로중심선을 이용하여 곡선 반경이 도로 구조 시설기준에 적합한지 여부를 평가하는 도구를 GIS 상에서 구현하고자 한다. 또한 ESRI® ArcObjectTM와 프로그래밍 언어인 비주얼 베이직(Visual Basic)을 사용해 도로의 평면선형을 자동적으로 산정할 수 있는 인터페이스를 설계 구현하였다.