검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        4.
        2009.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 고속도로 강우 유출수에서 입도 크기 분포 특성(PSD)을 이해하기 위하여 수행하였다. 경기도내 4곳의 포장도로 지역에서 2번의 강우사상동안 강우유출수 샘플 모니터링을 수행하였고, 시료내 입자의 크기분포를 분석하였다. 또한, 강우량, 유량 및 각 오염물질들을 분석하였다. 시료내 입자의 시간별 변화농도는 강우유출수의 시작 시 높은 값을 보였다가 급속히 감소하였으며 탁도, 총부유물질, BOD, 총질소 및 총인과 같은 오염물질과 유사한 유출경향을 보여주었다. 특히 총부유물질과 탁도와의 높은 상관성을 보여주었다. 강우유출수와 퇴적물내에 포함된 중금속에 있어서 구리, 납, 아연은 높은 농도를 보였으며 대부분의 중금속은 넓이에 대한 부피의 비율이 큰 세립입자에 강하게 결합된 형태로 존재한다.
        4,000원
        5.
        2010.11 KCI 등재 서비스 종료(열람 제한)
        Growth in population and urbanization has progressively increased the loading of pollutants from nonpoint sources as well as point sources. Especially in case of road regions such as city trunk road, national road and highway are rainfall and pollutants runoff intensive landuses since they are impervious and emit a lot of pollutants from vehicle activity. This research was conducted to investigate the nonpoint sources concentration and quantifying stormwater pollutants which are contained in rainfall runoff water. Three different monitoring sites in Jinju and Changwon city were equipped with an automatic rainfall gauge and flow meter for measuring rainfall and the volume of rainfall runoff. In the case of average EMC value, city trunk road was shown the highest value in target water quality items like as BOD, COD, SS, TN and TP. Or the amount of runoff loads by water quality items showed the highest value in city trunk road. And runoff load in city trunk road was 43.8 times high value compared to highway by value of city trunk road 356.7 ㎎/㎡, highway 8.150 ㎎/㎡, national road 19.99 ㎎/ ㎡ in the case of BOD.
        6.
        2010.06 KCI 등재 서비스 종료(열람 제한)
        Pollutants from urban pavement consists various kinds of substances which are originated from dry deposition, a grind out tire, corrosive action of rain to pavement and facilities and raw materials of the road etc.. These are major pollutants of urban NPS (Non-point source) during rainfall period. However there is not enough information to control such pollutants for appropriate management of natural water quality. In this study of transportation areas, three monitoring stations were set up at trunk road, urban highway and national road in Gyeongnam province. Runoff flow rate was measured at every 15minutes by automatic flow meters installed at the end of storm sewer pipe within the road catchment area for water quality analysis. Data was collected every 15 minutes for initial two hours of rainfall. Additional samples were collected 1-4 hours interval till the end of rainfall. The monitoring parameters were CODMn, SS, T-N & T-P and heavy metals. The average EMCs of TSS and CODMn were 62.0 mg/L and 24.2 mg/L on the city trunk road, which were higher than those of urban highway and national road, indicating higher pollutant loads due to activities in the city downtown area beside the vehicle. On the other hand, the average EMC of T-N and T-P were in the range of 2.67-3.23 mg/L and 0.19-3.21 mg/L for all the sampling sites. Heavy metals from the roads were mainly Fe, Zn, Cu and Mn, showing variable EMCs by the type of road. From the TSS wash-off analysis in terms of FF(first flush) index, first flush phenomenon was clearly observed in the trunk road(FF : 0.89-1.43). However, such mass delivery behavior was not apparently shown in urban highway(FF : 0.90-1.11) and national road(FF : 0.81-1.41).
        7.
        2009.02 KCI 등재 서비스 종료(열람 제한)
        Micropollutants, which can be caused by imperfect combustion, are toxic chemical compound that flows into the river system after being contained in road runoff, a non-point source pollutant and accumulates in the body. The micropollutants that have characteristics such as toxicity, persistence, bio-accumulation, long-range transportation behave so similarly to micro particles that they can be removed by means of filtration or absorption. This study has examined the kinds and concentrations of micropollutants contained in deposited road particles. It has revealed that the kinds of micropollutants contained in the clarified supernatant liquid of deposited road particles are heavy metals and polycyclic aromatic hydrocarbons(PAHs) composed of two or three benzene rings, including naphthalene and acenaphthalene. Their concentrations have been shown to be low, with 0.418 mg/L, 0.058 mg/L, 0.104 mg/L, 0.014 mg/L, 0.00075 mg/L for Zn, Pb, Cu, Cr, Cd, respectively and 0.00156 mg/L and 0.00184 mg/L for naphthalene and acenaphthalene.
        8.
        2008.10 KCI 등재 서비스 종료(열람 제한)
        Road runoff, one of non-point source pollutants, contains various heavy metals, most of which flow into discharge waters without being treated. The mechanism of removing the heavy metals in water is similar to that of removing micro-particles. Therefore, it is considered that it is possible to remove a lot of the heavy metals contained in the road runoff by filtering or absorbing them. In this paper, performed has been a basic study on the characteristics of UNFS (Up Flow Non-Point Source Filtering System) using carbide pellet and zeolite pellet as double-layer filtering mediums to treat the road runoff. The removal rate with filtering and absorption time has been shown as follows: 29.0% for Cr; 27.8% for Cd; 25.7% for Fe; 25.4% for Co; 21.2% for Pb; 19.6% for Zn; 18.2% for Al; 17.0% for Mn; 11.3% for Ni; 7.5% for Cu. The overall removal rate according to influx change has been shown to be approximately 30%, and the load of heavy metals flowing out in initial precipitation could be reduced by using carbide as a recycling filtering medium. When the removal as coarse particles settle is added up, it is expected that UNFS will result in a higher removal rate.