Spent nuclear fuel is a very complex material because various elements such as fission products, transuranium elements and activation products are produced from initial fresh UO2 fuel after irradiation. These elements exist in UO2 with various forms and can change the structure and of physicochemical properties of UO2. These changes could provide the surface activation site that could enhance chemical reactions and corrosion processes, and would significantly affect the storage environment for long-term disposal of spent nuclear fuel. Therefore, it can be important to understand the characteristics of spent nuclear fuel to design reliable and safe geological repositories. However, it is too hard to study the characteristics of spent nuclear fuel, because it is a very complex material by itself and not easy to handle due to its radioactivity, and it is also difficult to independently understand the effects of each element. Therefore, a simulated spent nuclear fuel containing an element that forms a solid solution and epsilon particle was manufactured to understand the change in characteristics of each element. Most of the elements that form solid solutions are lanthanides or actinides and can change the structure of the UO2 lattice itself. The epsilon particles exist as metals at the grain boundaries of UO2. In this study, structural changes were measured using XRD, SEM, and Raman spectroscopy, and physical and chemical properties were also identified by measuring electrical conductivity and electrochemical properties. The results were summarized, and the effects of solid solution elements and epsilon particles on the structure and properties of UO2 matrix were compared and discussed.
A unique porous material with controlled pore characteristics can be fabricated by the freeze-drying process, which uses the slurry of organic material as the sublimable vehicle mixed with powders. The essential feature in this process is that during the solidification of the slurry, the dendrites of the organic material should repel the dispersed particles into the interdendritic region. In the present work, a model experiment is attempted using some transparent organic materials mixed with glass powders, which enable in-situ observation. The organic materials used are camphor-naphthalene mixture (hypo- and hypereutectic composition), salol, camphene, and pivalic acid. Among these materials, the constituent phases in camphor-naphthalene system, i.e. naphthalene plate, camphor dendrite, and camphornaphthalene eutectic exclusively repel the glass powders. This result suggests that the control of organic material composition in the binary system is useful for producing a porous body with the required pore structure.
This study was carried out to investigate the possibility of solid particles as a stabilizing agent instead of surfactant for preparing emulsions in the cosmetics. The type of emulsions stabilized by solid particles was dependent on wettability of the particles for water and oil. The optimal conditions of emulsions stabilized by solid particles were determined with ratio of water and oil phase, polarity of oils and amount of stabilizers. In the foundation appling the optimal condition of emulsions stabilized by solid particles without surfactant, the stable emulsion type foundation was successfully prepared. As a result, this work indicates that emulsions stabilized by solid particles can be applied to make-up cosmetics.
Recently, the Ranque-Hilsch vortex tube is widely used for the local cooler of industrial equipment for special purpose. Although many studies on energy extraction in the vortex tube using air as the working fluid have been made so far, a few experimental studies treated solid particles extraction for incompressible fluid. So, an experimental study for the solid particles extraction in the vortex tube(Ranque-Hilsch vortex tube) using the water which is essentially an incompressible fluid is presented. The experiments were carried out with various cold end orifice diameter ratios ranging from 0.25 to 0.70, the input pressure ranging from 1 to 3MPa was considered. The emphasis was given to examine the effect of geometry factors of vortex tube at working fluid(water) for solid particles(Al2O3) extraction. The optimum geometry factor and inlet pressure for the maximum solid particles extraction was found that the smaller cold end orifice diameter ratio and the higher inlet pressure in experimental condition increase.