강진에 대한 다양한 비선형 거동을 하는 부재요소들로 이루어진 교량시스템의 현재까지의 일반적인 지진취약도 평가방법은 부재- 수준에서 평가하는 것이다. 본 연구의 목적 부재-수준의 지진취약도 평가결과로부터 구조시스템을 대표하는 시스템-수준의 지진취 약도 평가방법을 개발하는 것이다. 교량의 지진 거동을 일반적으로 교축방향과 교축직각방향으로 구분하기 때문에 본 연구에서도 시 스템-수준 지진취약도를 두 방향에 대하여 구분해 평가하였다. 길이 방향에 대한 부재-수준의 지진취약도평가는 교각, 교량받침, 충 돌, 교대, 낙교에 대하여 수행하였다. 교축직각 방향에 대해서는 충돌, 교대, 낙교의 손상이 영향을 주지 않으므로 부재-수준의 지진취 약도평가는 교각과 교량받침에 대하여만 수행하였다. 다양한 구조부재의 비선형모델을 이용한 지진해석은 OpenSEES 프로그램을 사용하여 수행하였다. 시스템-수준의 지진취약도는 부재-수준 사이의 손상이 직렬연결이라고 가정하고 평가하였다. 교각의 손상이 다른 부재-수준의 손상보다 시스템-수준의 지진취약도에 지배적인 영향을 주는 것을 알 수 있었다. 다시 말하면 가장 취약한 부재-수 준의 지진취약도가 시스템-수준의 지진취약도에 가장 지배적인 영향을 주는 것을 의미한다.
본 논문에서는 강상자형교의 바닥판과 주형에 대한 생애주기비용(Life-Cycle Cost : LCC)를 고려한 최적설계 방법을 제안하였다. 생애주기비용의 최적설계 문제는 초기비용, 유지관리비용 그리고 강도와 처짐 그리고 균열에 대한 파손 기대비용의 최소화 문제로 정식화할 수 있다. 기존의 재래적인 설계방법과의 비교를 동해서 강상자형교의 생애주기비용 최적설계의 우수성을 입증하였다. 또한 수치적인 결과의 고찰을 통하여 LCC에 근거한 최적설계가 여타의 설계방법들보다 좀 더 합리적이고 경제적이며 안전한 설계를 유도하는 것으로 분석되었다.
국내 교량 설계에서 온도 하중에 대한 현재 LSD (한계 상태 설계법)는 다양한 교량 형식에 대한 동일한 기준을 적용하고 있다. 본 연구에서는 유효 온도를 산정하기 위해 실제 크기의 상판이 없는 강상자형거더교 시험체를 제작하였다. 1년동안 강상자형거더교모형의 18개 지점에서 온도데이터를 측정하였다. 측정된 데이터를 바탕으로 대기 온도에 따른 교량단면내 유효 온도를 산정 하였다. 유로 코드의 유효 온도와 비교할 때 실측 유효온도의 결과는 매우 유사한 상관 관계를 보였다. 따라서, 본 데이터를 기반으로 산정 된 유효 온도는 국내 교량설계에 온도 하중에 적합한 설계 기준을 제시하기 위한 기초 자료로 사용할 수 있다.
A present LSD(limited state design) code for bridge temperature load have applied a uniform standard for various bridge type. In this study, in order to acquire the calculation effective thermal, a steel box girder bridge section specimen with real size dimension was manufactured. And over a year, the temperature data were measured in the sections. Effective temperature within the cross section according to atmospheric temperature were calculated by this experiment data. The analyzed results was very similar correlation when compared with the effective temperature of the Euro Code. Therefore, the effective temperature which calculated based on the present data could be used as the basic data in order to present to the appropriate design criteria for the thermal loads on the domestic bridge design
도로의 진출입로나 인터체인지에 널이 적용되고 있는 곡선교는 곡선반경, 사각 및 받침 간격 등에 따라 직선교보다 복잡한 거동을 나타낸다. 특히 상부구조물의 휨과 비틀림에 의해 솟음현상이 발생할 수 있고, 예각부 받침에는 부반력이 발생할 수 있다. 본 연구에서는 곡선교에서 교량의 곡선반경, 받침간격 및 사각이 부반력에 미치는 영향에 대해 분석하였다. 이를 위해 RAMP에 적용 가능한 지간(L)이 50m인 단경간의 강박스거더 곡선교를 대상으로 3차원 격자구조 모델을 이용하여 해석적인 방법으로 지점반력을 산출하였다. 부반력은 교량의 평면형상, 구조계의 형성, 받침의 조건 등에 의해 그 크기가 결정 되므로 매개변수는 곡선반경, 사각 및 받침간격으로 하였으며, 도로교설계기준에 제시된 하중조합에 의해 발생되는 반력의 크기를 계산하였다. 수치해석한 결과에 의하면 부반력은 곡선반경, 받침간격 및 사각이 작을수록 크게 발생하는 것으로 나타났으며, 사각 60˚ 일때 곡선반경 250m 이하에서는 받침간격에 관계없이 항상 부반력이 발생하였고, 사각 75˚일 때 곡선반경 180m에서는 θ/B가 0.27 이하, 곡선반경 250m에서는 θ/B가 0.32 이하에서 부반력이 발생하지 않았으며, 사각 90˚ 일 때 곡선반경 130m에서는 θ/B가 0.38 이하 일 때와 곡선반경이 180m 이상일 때 부반력이 발생하지 않았다. 이상의 결과로부터 설계변수인 곡선반경, 받침간격 및 사각이 곡선교에서 부반력 발생과 밀접한 관계가 있음을 확인하였고, 곡선교의 설계시 설계변수들의 상호관계를 적절히 설정하면 부반력이 발생하지 않는 구조계로 설계가 가능함을 알 수 있었다.
강상자형사교의 경우 국내의 도로교 설계기준이 갖추어지지 않아, 미국의 AASHTO 및 AASHTO LRFD 설계기준을 적용할 경우에는 실제의 거동과 다른 하중분배계수를 산출하게 되어 과대설계 및 과소설계를 초래할 가능성을 가지고 있다.
본 연구의 목적은 실제 거동을 바탕으로 한 강상자형 사교의 둔각부 지점에서의 전단력 산정을 위한 하중분배계수식을 제시하는 데 있다. 이를 위하여 본 연구에서는 강상자형 사교의 다양한 구조모델들에 대해 유한요소해석을 수행하고, 각 매개변수들이 강상자형사교의 하중분배계수에 미치는 영향을 분석한 후, 다중회귀분석을 수행하여 강상자형사교의 전단력 산정을 위한 하중분배계수식을 제시한다.
본 연구에서는 강상자형 사교의 윤하중분배계수에 관련된 외국 설계규준들(AASHTO, AASHTO LRFD)의 문제점을 파악하고, 윤하중분배계수에 영향을 미치는 주요변수에 대한 평가를 수행하였다. 또한 다양한 강상자형 사교의 모델에 대한 유한요소해석을 수행하였으며, 그 결과를 바탕으로 회귀분석을 이용하여 강상자형사교의 윤하중분배계수를 산정하는 식을 제안하였다. 본 연구 제안식의 적용 시 기존 설계규준식의 문제점을 보완할 수 있고, 강상자형사교의 설계시 구조해석에 소요되는 시간을 절약할 수 있어, 그 타당성 및 실용성을 확인할 수 있었다.