These days, the Composite Slabs with Deep Deck plate was commonly used in domestic construction site, and, the application of the Slim Floor system was increased from the Enlargement and High-rise Building. But, Slim Floor system using the Deep Deck was shown safety problem caused by the deflection and local buckling in construction phase when used to more than 6m. Therefore, for solving the problem, the installation of the shores is essential. This study is realize the long span slab without shores from control the deflection through applied the pre-tensioning elements in CAP deck. In addition, by applying the pre-tensioning member as the tensile member of the CAP Deck slab, the pre-tensioning member for the shores tries to be used as the structural member. Accordingly, to determine the flexural performance of the CAP Deck slab through the pre-tensioning force in tensile member, and, the composite effect of the CAP Deck slab by the experiments.
프리스트레스 콘크리트 정착부의 설계를 위해 AASHTO 및 PTI에서 관련 설계식을 제안하고 있다. 그러나 이러한 설계식은 구조물의 긴장력이 단순 지압판을 통해 구조 전반으로 전달된다는 가정으로 유도된 것으로 실제 구조물에 적용되는 상용 정착구의 형태와는 차이가 있다. 이 논문에서는 하중전달 시험에 의한 실험적 방법과 3차원 고체요소를 사용한 비선형 유한요소해석 프로그램을 이용한 해석적 방법을 통해 정착구의 형상 변수에 따른 정착부의 거동특성 변화에 대한 연구를 수행하였다. 하중전달시험 결과에서 얻어진 하중변위 곡선 및 극한하중 값을 해석을 통해 얻은 결과와 비교하여 유한요소모델의 적합성을 확인하였다. 또한 정착구의 리브의 설치위치, 리브의 개수, 리브의 설치길이를 주요 변수로 설정하여 형상변수에 따른 매개변수 연구를 수행하였다.
These days, the Composite Slabs with Deep deck plate was commonly used in domestic construction site, and, the application of the Slim Floor system was increased from the Enlargement and High-rise Building. But, Slim Floor system using the deep deck was shown safety problem caused by the deflection and local buckling in construction phase when used to more than 6m. Therefore, for solving the problem, the installation of the shores is essential. This study is realize the long span slab without shores from control the deflection through applied the pre-tensioning elements in cap deck. In addition, by applying the pre-tensioning member as the tensile member of the Cap Deck composite slab, the pre-tensioning member for the shores tries to be used as the structural member. Accordingly, to determine the flexural performance of the Cap deck composite slab through the pre-tensioning force in tensile member, and, the composite effect of the cap deck composite slab by the experiments.
케이블 구조시스템의 경우 자기 평형 상태를 유지하기 때문에 장력이 손실된 특정 케이블을 재긴장을 하지 않으면 구조엔지니어가 요구한 하중보다 더 큰 하중이 다른 케이블에 전달되어 손상을 야기 할 수 있다. 또한, 턴버클을 이용한 재긴장 방법이 기존에 널리 적용되고 있지만 정확한 장력조절과 대구경 케이블에는 적절하지 못하고 인장재의 하중의 크기를 측정하는 것이 어렵다. 따라서 효과적으로 재긴장 할 수 있는 유압식 볼팅 접합부를 개발하고 인장력을 실시간으로 확인할 수 있는 모니터링 시스템을 적용하였다. 본 논문에서는 개발된 시스템의 현장 적용성 실험과 결과를 제시하였다.
본 연구는 포스트텐션드 프리스트레스트 콘크리트 포장(PTCP: Post-Tensioned prestressed Concrete Pavement) 공법의 국내 적용을 위해 수행한 시험시공시에 현장실험을 통해 PTCP의 긴장시 구조적 거동을 분석하기 위하여 수행되었다. 실험을 위해 온도측정센서 및 변위측정게이지를 슬래브에 장착하여 환경하중 및 긴장력 도입에 따른 슬래브의 변위변화를 측정하였다. 총 세 차례에 걸쳐 긴장력을 도입하였으며 긴장작업의 적절성을 온도와 변위의 상관관계 횡방향 균열거동, 일일 종방향 변위변화량 등을 분석하여 판단하였다. 실험결과 타설초기 1차 긴장시에는 슬래브와 하부층과의 마찰 및 콘크리트의 소성성질 등의 요인에 의해 슬래브의 양끝단 부분에서만 큰 변위가 발생하였으나 이후 어느 정도의 시간이 경과한 후 가해진 긴장에서는 슬래브 전체에 뚜렷한 변위가 발생되나 여전히 마찰저항의 영향을 받는 것으로 분석되었다. 또한 긴장이 제대로 가해지면 균열이 존재하더라도 비활성화되어 슬래브가 일체의 거동을 나타내었다.
본 연구는 포스트 텐션드 콘크리트 포장(PTCP: Post-Tensioned Concrete Pavement)의 종방향 긴장 설계 방안을 구축하기 위하여 수행되었다. 우선 종방향 긴장으로 인해 PTCP 슬래브에 발생하는 응력분포를 분석하였다. 그리고 설계에 필요한 환경하중과 차륜하중이 PTCP 슬래브에 작용할 때 슬래브에 발생하는 인장응력의 분포를 분석하였다. 또한 슬래브와 하부지반 사이의 마찰저항 및 긴장으로 인해 발생하는 여러 손실원인들을 고려하여 긴장손실량을 산정하였다. 설계에 사용될 발생 인장응력은 각각의 하중에 의해 발생 가능한 최악의 조건에 의해 산정되며 여러 손실들은 현장조건을 최대한 반영하여 산정된다. 이러한 환경 및 차륜하중 등의 설계하중과 긴장 시 발생하는 각종 손실들을 감안한 유효긴장량을 산정하였으며 긴장응력 결정의 기준이 되는 콘크리트 슬래브의 허용인장응력의 영향에 대하여 분석하였다. 궁극적으로 종방향 긴장 설계방안은 설계하중에 대한 슬래브의 응력을 산출한 후 콘크리트 슬래브의 허용인장응력을 감하여 요구되는 긴장응력을 산출하고, 각종 손실이 고려된 유효긴장량과의 비교를 통해 합리적인 긴장간격 및 긴장량을 결정하는 것이다.
본 연구는 프리스트레스트 콘크리트 포장(PSCP)의 횡방향 긴장 설계방안을 구축하기 위하여 수행되었다. 우선 PSCP에 횡방향 긴장을 가했을 경우에 긴장간격에 따른 슬래브의 응력분포를 분석하였다. 또한 환경하중과 차륜하중이 PSCP슬래브에 작용할 때 슬래브에 발생하는 인장응력의 분포도 분석하였다. 이러한 환경 및 차륜하중 등의 설계하중과 긴장응력을 결정하는 기준인 슬래브의 허용인장응력을 합리적으로 선정하는 방법에 대하여 논의하였으며 이러한 기준의 선정이 횡방향 긴장 설계에 미치는 영향을 분석하였다. 연구결과, 긴장간격이 커질수록 긴장응력의 손실을 가져오는 범위가 넓어지며 특히 Shoulder부분에서의 응력손실이 급격하게 증가하는 것을 알 수 있었다. 따라서 횡방향 긴장 설계는 설계하중에 대한 슬래브의 응력을 산출한 후 슬래브가 허용인장응력 이내의 응력을 받도록 평균긴장응력을 산출하여 긴장간격 및 긴장량을 결정하면 되지만, 이때 Shoulder, Wheel Pass, 중앙부 등 슬래브의 여러 다른 위치에서의 응력 또한 반드시 검토하여 적절한 긴장간격을 선정하여야 한다.
본 연구에서는 프리스트레스트 콘크리트 포장에 횡방향으로 프리스트레싱을 가할 때 포장체에 발생하는 응력분포를 분석하여 긴장간격에 따른 특성을 파악하고 종방향과 횡방향 긴장의 상호 영향을 분석하기 위하여 유한요소 모델을 개발하여 구조해석을 수행하였다. 연구결과 횡방향 긴장간격은 작을수록 응력분배를 적절하게 할 수 있고 압축응력의 손실범위를 줄일 수 있으나 경제성 문제를 제고하여 적절한 긴장간격을 선정하여야 한다. 포장체의 노견, 주행위치, 중앙부 등의 여러 위치에서 분석한 횡방향 응력분포는 긴장간격이 넓을수록 평균응력과의 차이가 커지며 그 차이는 슬래브 중앙부로 갈수록 감소하게 된다. 횡방향 긴장을 가하면 종방향으로도 추가 긴장력 이 발생하게 되지만 그 크기는 무시 할 수 있을 정도로 작기 때문에 종횡방향 긴장 설계는 독립적으로 수행하여도 타당하다. 또한 횡방향 긴장 설계 시 이러한 긴장에 의한 응력분포를 이용하는 방안에 대해서도 본 논문에 언급하였다.
공장에서 제작한 콘크리트 슬래브를 나열한 후 프리스트레싱 기법을 도입하여 일체화시켜 건설하는 프리캐스트 프리스트레스트 콘크리트 포장의 강선 긴장에 의한 압축력 재하 시 포장체의 거동을 유한요소해석 모델을 개발하여 분석하였다. 먼저 정착구의 개수가 긴장 시 포장체의 압축응력 분포에 미치는 영향을 분석하여 적절한 정착구의 개수를 선정하였다. 그리고 하부층의 수평저항, 포장체의 길이, 슬래브의 두께, 정착단의 전단면적 등의 변수가 포장체의 압축응력 분포에 어떠한 영향을 미치는지에 대하여 분석하였다. 하부층의 수평저항은 압축응력의 손실을 가져오며 이러한 손실은 포장체의 중앙부로 갈수록 증가하게 된다. 또한 포장체의 길이가 길어질수록 하부층 수평저항에 의한 압축응력의 감소가 커지게 된다. 슬래브의 두께는 얇아질수록 하부층 수평저항에 의한 압축응력의 손실이 커지게 된다 하지만 압축력을 가하는 면적인 정착단의 전단면적은 압축응력의 분포에 크게 영향을 미치지는 않는다.
부재의 일정구간에 설치된 긴장재의 긴장작업과 이미 긴장되어 있는 상태의 긴장재를 이완시키므로써 의도적으로 유도되는 2차 모멘트를 이용한 새로운 연속화 공법이 개발되었다. 본 공법에서는 이들 긴장재의 긴장과 이완공정이 가장 핵심이 되는 작업이 되며, 실용적인 측면에서는 그 크기와 순서를 결정하는 것이 주된 과제가 될 것이다. 본 논문에서는 이 과정에서 필요한 최적의 긴장과 이완 비율의 조절 과정에 관하여 연구하였다. 그 결과, 긴장작업과 이완작업은 먼저 긴장작업부터 시작하여 3단계에 걸쳐 점진적으로 실시하는 것이 구조의 안전과 시공성을 위해 타당한 방법으로 나타났다. 그리고, 민감도 분석을 통하여 결정되는 선행 긴장작업의 긴장력 크기는 최소와 최대의 비율범위를 동시에 만족하는 값으로 결정되어야 하나, 시공의 효율성을 위해서 필요할 패는 최소 긴장비율만을 하한치로 하여 결정하여도 큰 문제는 없다.
The shear strength of damaged reinforced concrete beams using externally post-tensioning steel rods increased by 25∼57% compared to control beam. ACI 318-14 (simpled and detailed approaches) specifications for prestressed concrete beams conservatively predicted the nominal shear strength
The shear strength of damaged reinforced concrete beams using externally post-tensioning steel rods increased by 25∼57% compared to control beam. ACI 318-14 (simpled and detailed approaches) specifications for prestressed concrete beams conservatively predicted the nominal shear strength.
POST-TENSIONING GROUT PROBLEMS Bonded post-tensioned structures are at increased risk of corrosion and failure of the tendons when there are defects in the installed grout. The most common grout problems (defects) include: • Voids: Voids are common at high points of tendon ducts as a result of grout bleeding and inadequate grouting. Standard cement/water grout has typically produced grout with 3 to 5% bleed. • Chloride contaminated grout: Chloride contamination may result from the use of chloride contaminated grout or mixing water or the long-term exposure of the structure to marine environments or de-icing salts. • Soft grout: Soft grout may be created if excessive water is added during grout mixing, and wick induced bleeding causes localized grout with high water-cement ratio. THE SOLUTION The Post-Tech PTI Impregnation system has been developed to mitigate corrosion caused by these problems. The system utilizes the interstitial spaces between the wires of each strand in a multi-strand tendon to deliver (transfer) a unique corrosion inhibiting, impregnation material along the length of the cable. The impregnation material seeps between the wires of the strands to impregnate the surrounding grout or concrete. The impregnation material is designed to form a corrosion-resistant film on any exposed steel surfaces such as steel strands which are exposed in grout voids, and to make the grout more corrosion and moisture resistant. Laboratory Confirmation Laboratory confirmation was completed on tendon specimens provided by one DOT and grouted “lollipop” samples. The tendon specimens provided to Vector were sections of external tendons which had been removed from an existing bridge. Lolipop samples comprised a single strand section which was centrally grouted in a cylindrical block of prepackaged PT grout. Laboratory testing confirmed the ability of the impregnation material to travel along the length of the specimen, to soak into the grout surroundingthe strands and to pass from strand to strand across the cross-section of a grouted tendon. Accelerated laboratory testing also confirmed the ability of the impregnation process to reduce corrosion by over 90%. Field Demonstration and case study The demonstration project was completed on external tendons in a box girder bridge in Jacksonville, FL (I-95 / I-295 Interchange). The demonstration project verified the capability of impregnating the full length of 256’ and 205’ grouted tendons from end anchorage locations, the capability of impregnating up to 100’ in each direction from a mid-point location, and the capability of the impregnation material to penetrate the grout adjacent to the strand. FDOT has implemented PTI Impregnation on the tendons of I-4 Connector in which soft grout was found. All selected tendons were successfully impregnated. Free water/moisture was pushed out of the tendons during the impregnating process. CONCLUSIONS Laboratory testing confirmed the ability of the impregnation material to travel along the length of the specimen, to soak into the grout surrounding a strand and to reduce corrosion by over 90% when exposed in an accelerated corrosion cell. Field demonstration at the I-95/295 Interchange in Jacksonville, Florida and Implementation on I-4 Connector in Tampa, Florida has demonstrated the following: • All strands of 256’ long grouted tendons can be impregnated full-length from an end anchorage location, • Impregnation material can flow up to 100’ in each direction from a mid-point location,. • Impregnation material can penetrate grout adjacent to a grouted strand, and • Free water/moisture can be pushed out of the tendons during the impregnation process.
The connection parts of electric distribution cable can be damaged by wind and various types of outer loads. So, the reasonable connection system is required to solve these problems. Therefore, this study presents the composition type of self-tensioning connection system for electric distribution cable.
A new electromechanical impedance-based method was proposed to estimate the remaining tensile force of post-tensioning system. It was applied to a real-scaled anchorage system which has 19 strands, wedges, and anchor head, a bearing plate, and a steel duct. Experimental results showed that the proposed scheme has great potential to evaluate the remaining tensile force quite accurately.
본 연구에서는 외부 부착 프리스트레스트 탄소섬유판으로 보강된 RC보의 휨거동을 분석하기 위한 실험연구를 수행하였다. 실험체는 프리스트레스 양을 변수로 축소모형으로 제작되었다. 또한 프리스트레스의 도입에 따른 구조성능 비교를 위하여 기준실험체와 단순부착 실험체를 함께 제작하였다. 실험결과, 단순 부착 탄소섬유판으로 보강된 부재는 조기 박리에 의해 탄소섬유판 인장강도의 50% 이하에서 최종파괴되었다. 그러나, 프리스트레스를 도입하여 보강한 실험체는 모두 탄소섬유판의 파단하중까지 도달하였다. 또한 프리스트레스 보강량의 증가에 따라서 균열하중, 항복하중은 증가하며 최대하중은 프리스트레스 양과 관계없이 일정한 것으로 나타났다.
본 연구에서는 외부 비부착형 프리스트레스트 탄소섬유판으로 보강된 RC보의 휨거동을 분석하기 위한 실험연구를 수행하였다. 실험체는 프리스트레스 양 및 정착장치의 형상을 변수로 총 10개로 제작되었다. 또한 프리스트레스의 도입에 따른 구조성능 비교를 위하여 기준실험체와 단순부착 실험체를 함께 제작하였다. 실험결과, 단순 부착 탄소섬유판으로 보강된 부재는 조기 박리에 의해 탄소섬유판 인장강도의 50% 이하에서 최종파괴되었다. 그러나, 프리스트레스를 도입하여 보강한 실험체는 모두 탄소섬유판의 파단하중까지 도달하였다. 또한 스터드형 정착장치를 적용한 실험체들의 보강성능은 매립형 정착장치를 적용한 실험체와 동등한 보강성능을 나타내었다.