검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        3.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 인공지능기법을 이용하여 진동만의 용존산소량 예측을 하였다. 관측자료에 존재하는 결측 구간을 보간하기 위해 양방향재귀신경망(BRITS, Bidirectional Recurrent Imputation for Time Series) 딥러닝 알고리즘을 이용하였고, 대표적 시계열 예측 선형모델인 ARIMA(Auto-Regressive Integrated Moving Average)과 비선형모델 중 가장 많이 이용되고 있는 LSTM(Long Short-Term Memory) 모델을 이용 하여 진동만의 용존산소량을 예측하고 그 성능을 평가했다. 결측 구간 보정 실험은 표층에서 높은 정확도로 보정이 가능했으나, 저층에서는 그 정확도가 낮았으며, 중층에서는 실험조건에 따라 정확도가 불안정하게 나타났다. 실험조건에 따라 정확도가 불안정하게 나타났다. 결과로부터 LSTM 모델이 중층과 저층에서 ARIMA 모델보다 우세한 정확도를 보였으나, 표층에서는 ARIMA모델의 정확도가 약간 높은 것으로 나타났다.
        4,000원
        4.
        2018.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, we propose an Elman recurrent neural network to predict and analyze a time series of power energy consumption. To this end, we consider the volatility of the time series and apply the sample variance and the detrended fluctuation analyses to the volatilities. We demonstrate that there exists a correlation in the time series of the volatilities, which suggests that the power consumption time series contain a non-negligible amount of the non-linear correlation. Based on this finding, we adopt the Elman recurrent neural network as the model for the prediction of the power consumption. As the simplest form of the recurrent network, the Elman network is designed to learn sequential or time-varying pattern and could predict learned series of values. The Elman network has a layer of “context units” in addition to a standard feedforward network. By adjusting two parameters in the model and performing the cross validation, we demonstrated that the proposed model predicts the power consumption with the relative errors and the average errors in the range of 2%~5% and 3kWh~8kWh, respectively. To further confirm the experimental results, we performed two types of the cross validations designed for the time series data. We also support the validity of the model by analyzing the multi-step forecasting. We found that the prediction errors tend to be saturated although they increase as the prediction time step increases. The results of this study can be used to the energy management system in terms of the effective control of the cross usage of the electric and the gas energies.
        4,000원
        5.
        2014.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 기존의 회귀분석과는 달리 시계열 분석과 인공신경망 모형을 이용하여 장래 해상교통량을 예측하였다. 특히, 시계열 분석을 통한 예측값을 인공신경망 모형에 추가 입력변수로 적용하여 장래 해상교통량 예측을 제고하고자 하였다. 본 연구는 인천항의 1996년부터 2013년까지 월별 관측값을 대상으로 하였다. 모형의 예측력 검증을 위해 1996년부터 2012년까지 관측값을 대상으로 구축한 모형으로부터 2013년을 예측하여 실제 관측값과의 비교로 적합한 모형을 판별하였다. 인천항의 2015년 장래 해상교통량은 매월 평균 교통량보다 5월과 11월에 각 5.9 %, 4.5 % 많았으며, 1월과 8월은 매월 평균 교통량보다 각 8.6 %, 4.7 % 적은 것으로 예측되었다. 따라서 인천항은 계절에 따른 월별 교통량의 차이를 확인할 수 있다. 본 연구는 해상교통 현장관측 조사시 계절에 따른 교통량의 특성을 반영할 수 있는 기초 자료로 활용될 수 있다.
        4,000원
        6.
        2011.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        한반도에서 측정되고 있는 시계열 지자기 자료에 대해 결측 자료에 대한 복원과 측정 자료에 기반한 예측, 그리고 기관별 관측 자료에 대한 잡음도를 분석하였다. 결측 자료의 복원을 위해 주성분 분석을 통한 최적화 기법과 지구 통계학적 접근에 의한 방법을 적용하고 그 효과를 비교하였다. 주성분 기법은 자료의 주기성을 효율적으로 반영하는 특성을 보였으며, 지구통계학적 방법은 안정적인 복원 능력을 보였다. 관측소 별 잡음도를 파악하기 위해 이천 및 청양에서 동일 기간에 관측한 지자기 자료에 대해 공간적 분산성을 스캐터그램을 이용해 파악하였다. 그 결과 청양 관측소의 자료가 이천 관측소의 자료보다 연속적이며 안정적인 측정이 이루어진 것을 알 수 있었으며, 복원을 위한 크리깅 추정에서도 실제 자료의 추정이 매우 정확하게 이루어졌다. 결측자료의 복원의 경우 20분 이내의 결측 자료에 대해서는 크리깅 기법과 주성분 기법 모두 유사한 결과를 보였으나, 그 이상의 결측에 대한 복원과 지자기 자료의 예측이 필요한 경우에는 주성분 기법을 적용해야 주파수 영역에서의 특성이 실제와 더욱 유사하게 나타났다. 또한 지자기 자료의 예측을 위해서는 주성분 분석이 효율적으로 이용될 수 있음을 파악하였으며, 하루 정도의 지자기장을 예측할 수 있는 것으로 보인다.
        4,900원
        7.
        2007.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Statistical analyses were performed to investigate the relative success and accuracy of daily maximum X-ray flux (MXF) predictions, using both multilinear regression and autoregressive time-series prediction methods. As input data for this work, we used 14 solar activity parameters recorded over the prior 2 year period (1989-1990) during the solar maximum of cycle 22. We applied the multilinear regression method to the following three groups: all 14 variables (G1), the 2 so-called 'cause' variables (sunspot complexity and sunspot group area) showing the highest correlations with MXF (G2), and the 2 'effect' variables (previous day MXF and the number of flares stronger than C4 class) showing the highest correlations with MXF (G3). For the advanced three days forecast, we applied the autoregressive timeseries method to the MXF data (GT). We compared the statistical results of these groups for 1991 data, using several statistical measures obtained from a 2x2 contingency table for forecasted versus observed events. As a result, we found that the statistical results of G1 and G3 are nearly the same each other and the 'effect' variables (G3) are more reliable predictors than the 'cause' variables. It is also found that while the statistical results of GT are a little worse than those of G1 for relatively weak flares, they are comparable to each other for strong flares. In general, all statistical measures show good predictions from all groups, provided that the flares are weaker than about M5 class; stronger flares rapidly become difficult to predict well, which is probably due to statistical inaccuracies arising from their rarity. Our statistical results of all flares except for the X-class flares were confirmed by Yates' X2 statistical significance tests, at the 99% confidence level. Based on our model testing, we recommend a practical strategy for solar X-ray flare predictions.
        4,000원
        8.
        2005.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        엘니뇨현상과 관련된 해양 아표층 변동성을 조사하기 위해 1980년부터 2004년까지의 적도 해역의 20도 등온선 깊이(Z20)와 난수질량(WWV) 자료를 분석하였다. 주성분 분석, 합성 분석 및 교차상관 분석 결과, 아표층 시계열 자료는 Nino3.4 SST와 유의미한 시간 지연을 가지고 강한 상관성을 보였다. 이 결과는 아표층 해양 변수가 엘니뇨현상에 유용한 예측 인자임을 시사한다. 분석된 결과를 근거로 1996년부터 2004년까지 Nino3.4 SST를 예측하기 위해 신경망 예측 모델을 구성하였다. 해상풍을 입력 자료로 사용하였을 경우 보다 WWV를 적용하였을 때 3개월 이하의 단기 예측을 제외하고 모든 예측 시간에서 더 우수한 예측력을 보였으며, 5-8개월의 예측에 있어서는 기존의 여러 통계 모델 결과보다 예측 성능이 우수함을 확인하였다.
        4,000원