Information on time spent in microenvironments has a critical role in individuals’ exposure assessment. Time-activity studies have become an integral part of comprehensive exposure assessment and personal exposure modeling. The aims of this study were to estimate the exposure level of NO2, PM10 and VOCs, and to compare the estimated exposure by using time-activity pattern and indoor air concentration. This study was performed upon 28 university students living in Daegu. We measured air pollutants of NO2, PM10 and VOCs at houses where the university students spent most their times. In this study, according to the summer and winter, time-activity patterns of university students were different. The 28 university students average spending times in house indoors and other indoors time were 11.52±2.14 and 7.63±2.65 hours in summer, and 14.78±3.30 and 6.59±3.03 hours in winter, respectively. The university students personal exposure NO2 concentrations were average 21.62±5.88 ppb and I/O ratio was 0.89±0.27. Personal average exposure of PM10 concentration was between house indoors and outdoors concentrations which indoor house concentration was 37.68±7.57 μg/m3 and outdoor house concentration was 43.85±9.80 μg/m3 with 0.88±0.17 of I/O ratio. Personal exposure to benzene and the average concentration of benzene did not exceed in atmosphere environmental standard (annual 1.5 ppb) and the outdoor houses concentration was much higher than indoor houses.
In this study, we estimated nitrogen dioxide (NO2) concentrations in microenvironments where residential indoor, residential outdoor, other indoors, and transportation using measured personal exposure and multiple linear regression analysis of time-weighted average model, and compared with measured NO2 concentration in microenvironments. Measured residential indoor, outdoor and other indoor NO2 concentration was 22.22±9.59 ppb, 23.64±9.62 ppb, and 22.07±13.90 ppb, respectively. NO2 concentrations in residential indoor and outdoor, total outdoor, other indoor, and transportation by multiple regression analysis were significantly estimated as 20.48 ppb, 32.79 ppb, 24.35 ppb, and 28.82 ppb, respectively (p= 0.000). Measured and estimated NO2 concentration were similar with each other, therefore NO2 concentrations in each microenvironment were able to be estimated using time-weighted average model and personal exposure with multiple regression analysis.