본 논문에서는 프리텐션된 고강도 콘크리트 부재에서의 전달길이를 측정하기 위해 FBG 센서가 기입된 스마트 강연선을 활용하여 실험을 수행하였다. 전달길이 측정을 위해 길이 3m, 단면 150×150mm의 고강도 콘크리트 시험체를 총 5개 제작하였으며, 프리텐션 도입 시 콘크리트 압축강도는 58MPa로 측정되었다. 실험 결과 콘크리트 표면에 부착하는 기존의 전기 저항식 게이지보다 FBG 센서로부터 보다 정밀하고 신뢰성있는 강연선의 전달길이를 계측할 수 있는 것으로 나타났다. 계측결과로부터 산정된 강연선 전달길이를 기존의 여러 모델들과 비교하였으며, 이를 통해 고강도 콘크리트 부재에서의 전달길이 산정에 대한 기존 모델들의 적용성을 분석하였다. 본 연구 내용은 향후 강연선의 부착 특성 분석 등의 관련 분야 연구 등에 유용할 것으로 기대된다.
This study was carried out to establish an effective system for embryo transfer of techniques by analyzing several factors affecting the gestation length and the weight changes of calves produced from embryo transfer in Korean cattle. The results obtained in study on factors affecting the gestation length and the weight changes of calves produced from embryo transfer were as fallow; 1) The gestation length and the birth weight did not differ between male and female, but the weight changes after birth were remarkablely different between sex(P<0.05). 2) The gestation length between heifers and cows was not different, and body weights at birth and 6 months were remarkabley heavy in cows(P<0.05). Weight changes after 6 months were not different. 3) The gestation length and the birth weight were significantly different between the single and twin calving (P<0.05). Weight of twin at 6 and 12 months were remarkabely light. 4) Calving seasons did not affect the gestation length the and the birth weight. Weaning weight was significantly heavy(P<0.05), but weight changes after weaning were no different among the calving seasons. Conclusivley, this results suggest that cows will be better when considering growth of calves and twin produced from embryo trnsfer in Korean cattle.
In this study, the observational arc-length effect on orbit determination (OD) for the Korea Pathfinder Lunar Orbiter (KPLO) in the Earth-Moon Transfer phase was investigated. For the OD, we employed a sequential estimation using the extended Kalman filter and a fixed-point smoother. The mission periods, comprised between the perigee maneuvers (PM) and the lunar orbit insertion (LOI) maneuver in a 3.5 phasing loop of the KPLO, was the primary target. The total period was divided into three phases: launch–PM1, PM1–PM3, and PM3–LOI. The Doppler and range data obtained from three tracking stations [included in the deep space network (DSN) and Korea Deep Space Antenna (KDSA)] were utilized for the OD. Six arc-length cases (24 hrs, 48 hrs, 60 hrs, 3 days, 4 days, and 5 days) were considered for the arc-length effect investigation. In order to evaluate the OD accuracy, we analyzed the position uncertainties, the precision of orbit overlaps, and the position differences between true and estimated trajectories. The maximum performance of 3-day OD approach was observed in the case of stable flight dynamics operations and robust navigation capability. This study provides a guideline for the flight dynamics operations of the KPLO in the trans-lunar phase.
In a pretensioned concrete member, the effective prestress is not fully developed in a certain length from the end of the member, which is defined as transfer length. Because of its complex mechanism, previous transfer length models are mostly empirical and provide very different results. In this study, the Adaptive Neuro-Fuzzy Inference System(ANFIS) was introduced to estimate the transfer lengths of pretensioned concrete members. A total of 209 experimental data has been used to train ANFIS, and the trained ANFIS algorithm estimated the transfer lengths of test specimens very accurately.
Recently, many researches have been conducted to use FBG seonsors in order to measure the effective prestress force in a PSC girder. FBG sensors can be useful to investigate transfer length in prestressed concrete members since they do not have any effect on the bond mechanism between a tendon and concrete. In this research, an experimental program has been conducted to measure transfer length of tendons in high strength concrete members by using FBG sensors. The test results showed that FBG sensors gave a transfer length similar to that measured by concrete surface gauges, but they gave more stable results. This research can be useful for relevant areas such as investigation on the bond mechanism of a tendon in high strength concrete members.
We compared the Load transfer area of the composite column rechargeable through FEM in this study. We compared by the method of comparative analysis of the Abaqus program. Load transfer is easy to position the stud in the same transmission with the load direction, and the stud is to be arranged densely in the FEM is KBC2009 and KBC2013. We serve as resources for establishing a non-diaphragm type filled composite column standard through shear connectors in Load transfer area with this result.