검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 194

        1.
        2023.11 구독 인증기관·개인회원 무료
        The potentiostatic titration method is one of the effective methods for determining the total uranium assay in high-concentration uranium samples. A notable approach is the Devies-Grey titration method, which was first reported in 1964. In the U sample treatment process of this method, the reduction of U(VI) by Fe(II) is initially a non-spontaneous reaction based on the reduction potentials of the two half-reactions. However, in a high-concentration phosphoric acid medium, the reduction potential of Fe(II) is enhanced, simultaneously increasing the reduction potential of U(VI). As a result, the redox reaction becomes spontaneous due to these dual effects. On the other hand, the reaction kinetics can elucidate why nitric acid does not oxidize U(IV) during the oxidation of Fe(II) to Fe(III). Furthermore, the role of Mo(VI)/Mo(V) as a redox enhancer, employed alongside nitric acid, can be comprehended through electrochemical means. Similarly, the function of V(IV) as an electrochemical enhancer, aiding the action of the Cr(VI) titrant, becomes understandable. Grasping the various phenomena that manifest during the titration process is imperative for refining existing titration methods and pioneering new ones.
        2.
        2023.11 구독 인증기관·개인회원 무료
        This study explores the impact of metal doping on the surface structure of spent nuclear fuels (SNFs), particularly uranium dioxide (UO2). SNFs undergo significant microstructural changes during irradiation, affecting their physical and chemical properties. Certain elements, including actinides and lanthanides, can integrate into the UO2 lattice, leading to non-stoichiometry based on their oxidation state and environmental conditions. These modifications are closely linked to phenomena like corrosion and oxidation of UO2, making it essential to thoroughly characterize SNFs influenced by specific element doping for disposal or interim storage decisions. The research employs X-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy to investigate the surface structure of UO2 samples doped with elements such as Nd3+, Gd3+, Zr4+, Th4+, and ε-particles (Mo, Ru, Pd). To manufacture these samples, UO2 powders are mixed and pelletized with the respective dopant oxide powders. The resulting pellet samples are sintered under specific conditions. The XRD analysis reveals that the lattice parameters of (U,Nd)O2, (U,Gd)O2, (U,Zr)O2, and (U,Th)O2 linearly vary with increasing doping levels, suggesting the formation of solid solutions. SEM images show that the grain size decreases with higher doping levels in (U,Gd)O2, (U,Nd)O2, and (U,Zr)O2, while the change is less pronounced in (U,Th)O2. Raman spectroscopy uncovers that U0.9Gd0.1O2-x and U0.9Nd0.1O2-x exhibit defect structures related to oxygen vacancies, induced by trivalent elements replacing U4+, distorting the UO2 lattice. In contrast, U0.9Zr0.1O2 shows no oxygen vacancy-related defects but features a distinct peak, likely indicating the formation of a ZrO8-type complex within the UO2 lattice. ε-Particle doped uranium dioxide shows minimal deviations in surface properties compared to pure UO2. This structural characterization of metal-doped and ε-particle-doped UO2 enhances our understanding of spent nuclear fuel behavior, with implications for the characterization of radioactive materials. This research provides valuable insights into how specific element doping affects the properties of SNFs, which is crucial for managing and disposing of these materials safely.
        3.
        2023.11 구독 인증기관·개인회원 무료
        Bis (2-ethylhexyl)phosphoric acid (HDEHP) is a renowned extractant, favored for its affinity to selectively remove uranium via its P=O groups. We previously synthesized HDEHP-functionalized mesoporous silica microspheres for solid-phase uranium adsorption. Herein, we investigated the kinetic and isothermal behavior of uranyl ion adsorption in mesoporous silica microspheres functionalized with phosphate groups. Adsorption experiments were conducted by equilibrating 20 mg of silica samples with 50 mL of uranium solutions, with concentrations ranging from 10 to 100 mgU L−1 for isotherms and 100 mgU L−1 for kinetics. Three distinct samples were prepared with varying HDEHP to TEOS molar ratios (x = 0.16 and 0.24) and underwent hydrothermal treatment at different temperatures, resulting in distinct textural properties. Contact times spanned from 1 to 120 hours. For x = 0.16 samples, it took around 50 and 11 hours to reach equilibrium for the hydrothermally treated samples at 343 K and 373 K, respectively. Adsorbed quantities were similar (99 and 101 mg g-1, respectively), indicating consistent functional group content. This suggests that the key factor influencing uranium adsorption kinetics is pore size of the silica. The sample treated at 373 K, with a larger pore size (22.7 nm) compared to 343 K (11.5 nm), experienced less steric hindrance, allowing uranium species to diffuse more easily through the mesopores. The data confirmed the excellent fit of pseudo-second-order kinetic model (R2 > 0.999) and closely matched the experimental value, suggesting that chemisorption governs the rate-controlling step. To gain further insights into uranium adsorption behavior, we conducted an adsorption isotherm analysis at various initial concentrations under a constant pH of 4. Both the Langmuir and Freundlich isotherm models were applied, with the Langmuir model providing a superior fit. The relatively high R2 value indicated its effectiveness in describing the adsorption process, suggesting homogenous sorbate adsorption on an energetically uniform adsorbent surface via a monolayer adsorption and constant adsorption site density, without any interaction between adsorbates on adjacent sites. Remarkably, differences in surface area did not significantly impact uranium removal efficiency. This observation strongly suggests that the adsorption capacity is primarily governed by the loading amount of HDEHP and the inner-sphere complexation with the phosphoryl group (O=P). Our silica composite exhibited an impressive adsorption capacity of 133 mg g-1, surpassing the results reported in the majority of other silica literature.
        4.
        2023.11 구독 인증기관·개인회원 무료
        Radiation workers, especially those dealing with Uranium isotopes, can potentially intake Uranium -containing materials through their respiratory and digestive systems. According to the “Regulations on the Measurement and Calculation of Internal Exposure” from Nuclear Safety and Security Commission (NSSC), those who intend to work in or enter the nuclear facilities with a risk of exceeding 2 mSv exposure per year should be examined the internal exposure. However, when it comes to in-vitro bioassay, Uranium intake through drinking water can affect the quantitative analysis. The International Commission on Radiological Protection (ICRP) reported in ICRP Publication 23 (Report on the Task Group on Reference Man) that the reference man excretes Uranium in the urine (0.05-0.5 μg/day) and feces (1.4-1.8 μg/day). Korea Atomic Energy Research Institute (KAERI) set the 90.5 ng/day as the 238U background of workers handing Uranium based on the daily Uranium intake of Koreans. In this research, we examined the possible effects of Uranium in drinking water on internal exposure by analyzing the concentration of Uranium in bottled waters from various water sources sold in the domestic market and a water from the water purifier. The 238U concentration results of analyzing 11 bottled waters and 1 purified water, were ranged from 0 to 10.2 μg/L. All the results were satisfied the standard of 30 μg/L according to “Regulations for Drinking Water Quality Standards and Inspection” enacted by the Ministry of Environment. However, various concentrations were shown depending on the water sources. Assuming that these concentrations of water are consumed by drinking 1 L per day, the internal dose assessment result is 0 to 0.94 mSv. On the other hand, if it is assumed to be inhaled, it can be an overestimated because the dose coefficient of inhalation, Type M is higher than that of ingestion, f1=0.02 which are the values recommended by ICRP Publication 78 (Individual Monitoring for Internal Exposure of Workers) when the Uranium compound is unspecified. In case of two workers at KAERI, the daily excretion of urine was 151 and 120 ng/day respectively in the first quarter monitoring. However after changing the kind of drinking water in the second quarter monitoring, it dropped to 17.4 and 15.4 ng/day respectively. Through this study, it is confirmed that the Uranium background in urine can be analyzed differently depending on the kind of drinking water consumed by each worker. Depending on the Uranium concentration of drinking water, the internal exposure dose assessment can be overestimated or underestimated. Therefore, the Uranium concentration and intake amount according to the kind of drinking water should be considered for in-vitro bioassays of Uranium handlers. Furthermore, if necessary, the Uranium isotope ratio analysis in urine and the handling information should be comprehensively considered. In addition, in order to exclude the effect of intake through the digestive system, replacing the kind of drinking water can be considered. The additional analysis such as in-vivo bioassay and 24 hours urine analysis rather than spot samples can be also recommended.
        5.
        2023.11 구독 인증기관·개인회원 무료
        In all geodisposal scenarios it is key to understand the interaction of radionuclides with mineral particles during their formation/recrystallisation. Studying processes at the molecular scale provides insight into long-term radionuclide behaviour. Uranium is a significant radionuclide in higher activity wastes destined for geological disposal, and iron (oxyhydr) oxides (e.g. goethite, 􀟙-FeOOH). are ubiquitous in and around these systems, formed via processes including metal corrosion and microbially induced reactions. There are numerous reports of uranium-incorporation into iron (oxyhydr) oxides, therefore it has been suggested that they may be a barrier to uranium migration in geodisposal systems. However, long-term stability of these phases during environmental perturbations are unexplored. Specifically, U-incorporated iron (oxyhydr) oxide phases may interact with Fe(II) and sulphide from biological or geological origin. Firstly, electron transfer occurs between adsorbed Fe(II) and iron oxyhydroxides, with potential for changes in the speciation of incorporated uranium e.g. oxidation state changes and/or release. Secondly, on exposure to aqueous sulfide, iron (oxyhydr) oxides undergo reductive dissolution and recrystallisation to iron sulphides. Understanding the fate of incorporated uranium during these process in key to understanding its long term behaviour in subsurface systems. A series of experimental studies were undertaken where U(VI)-goethite was synthesized then reacted with either aqueous Fe(II) or S(-II), and the system monitored over time using geochemical analysis and X-ray absorption spectroscopy (XAS) techniques e.g. U LIII-edge and MIV-edge HERFD-XANES. Reaction with aqueous Fe(II) resulted in electron transfer between Fe(II) and U(VI)-goethite, with > 50% U(VI) reduced to U(V). XAS analysis revealed that U remained within the goethite structure, and electron transfer only occurred within the outermost atomic layers of goethite. which led to U reduction. Rapid reductive dissolution of U(VI)-goethite occurred on reaction with sulfide at pH7. A transient release of aqueous U was observed during the first day, likely due to uranyl(VI)-persulfide species. However, U was retained in the solid phase in the longer term. In contrast, the sulfidation of U adsorbed to ferrihydrite at pH 12.2 led to the immediate release of U (< 10% Utotal) associated with a colloidal erdite (NaFeS2·2H2O) phase. Moreover, in the bulk phase the surface of ferrihydrite was passivated by sulfide, and U was found to have been trapped within surface associated erdite-like fibres. Overall, these studies further understanding of the long-term behaviour of U-incorporated iron (oxyhydr)oxides supporting the overarching concept of iron (oxyhydr) oxides acting as a barrier to U migration.
        6.
        2023.11 구독 인증기관·개인회원 무료
        The primary objective of this study is to evaluate a systematic design’s effectivity in remediating actual uranium-contaminated soil. The emphasis was placed on practical and engineering aspects, particularly in assessing the capabilities of a zero liquid discharge system in treating wastewater derived from soil washing. The research method involved a purification procedure for both the uranium-contaminated soil and its accompanying wastewater. Notably, the experimental outcomes demonstrated successful uranium separation from the contaminated soil. The treated soil could be self-disposed of, as its uranium concentration fell below 1.0 Bq·g−1, a level endorsed by the International Atomic Energy Agency for radionuclide clearance. The zero liquid discharge system’s significance lay in its distillation process, which not only facilitated the reuse of water from the separated filtrate but also allowed for the self-disposal of high-purity Na2SO4 within the residues of the distilled filtrate. Through a comparative economic analysis involving direct disposal and the application of a remediation process for uranium-contaminated soil, the comprehensive zero liquid discharge system emerged as a practical and viable choice. The successful demonstration of the design and practicality of the proposed zero liquid discharge system for treating wastewater originating from real uranium-contaminated soil is poised to have a lasting impact.
        7.
        2023.11 구독 인증기관·개인회원 무료
        The mobility of uranium (U) in various disposal environments of a deep geological repository is controlled by various geochemical conditions and parameters. In particular, oxidation state of uranium is considered as a major factor to control the mobility of uranium in most of geological environments. In this study, therefore, we investigated the geochemical behaviors of uranium in grounwater samples from natural analogue study sites located in the Ogcheon Metamorphic Belt (OMB). Groundwater samples were taken using a packer system from Boeun Hoenam-myun site and Geumsan Suyoung-ri site where several boreholes were dilled with various depths. The geochemical properties and parameters such as temperature, pH, Eh, EC, and DO were directly measured in the site using an in-line measurement method. The concentrations of major cations and anions in the groundwater samples were measured by using ICP-OES (Inductively Coupled Plasma-Optical Emission Spectrometry) and IC (Ion Chromatography), respectively. The concentrations of trace elements including U and Th were measured by using ICP-MS (Inductively Coupled Plasma-Mass Spectrometry) The concentrations of U in the groundwater samples are very low for the Hoenammyun site (0.03~0.69 ppb) and Suyoung-ro site (0.39~1.74 ppb) even though the two sites are uranium deposits and redox conditions are weakly oxidizing. The speciation, saturation index (SI), pH-Eh (Poubaix) diagram were calculated using the Geochemist’s Workbench (GWB 9.0) program and the recent OECD/NEA thermochemical database for U. Calculation results for U speciation in the groundwater samples show that major dissolved uranium species in the groundwater samples are mainly as calcium uranyl carbonate complexes such as Ca2UO2(CO3)3(aq) and CaUO2(CO3)3 2- for almost all groundwater samples. The calculated results for SI and Poubaix diagram also show that the dominant uranium solid phase is a uranyl silicate mineral, uranophane (Ca(H2O)(UVIO2)2 (SiO2)2(OH)6), not uraninite (UIVO2). Since the determination of Eh values for natural groundwater samples is very difficult and uncertain work, we analyzed and discussed the effect of Eh on the geochemical behaviors of U in the groundwater. However, these calculation results are not consistent with the observation for U minerals in rock samples using electron microscopic techniques. Thus, we need further studies to explain the discrepancy between calculation and observation results.
        8.
        2023.11 구독 인증기관·개인회원 무료
        Raman characteristics of various minerals constituting natural rocks collected from uranium deposits in Okcheon metamorphic zone in Korea are presented. Micro-Raman spectra were measured using a confocal Raman microscope (Renishaw in Via Basis). The focal length of the spectrometer was 250 mm, and a 1800 lines/mm grating was installed. The outlet of the spectrometer was equipped with a CCD (1,024256 pixel) operating at -70°C. Three objective lenses were installed, and each magnification was 10, 50, and 100 times. The diameter of the laser beam passing through the objective lens and incident on the sample surface was approximately 2 m. The laser beam power at 532 nm was 1.6 mW on the sample surface. Raman signal scattered backward from the sample surface was transmitted to the spectrometer through the same objective lens. To accurately determine the Raman peak position of the sample, a Raman peak at 520.5 cm-1 measured on a silicon wafer was used as a reference position. Since quartz, calcite, and muscovite minerals are widely distributed throughout the rock, it is easy to observe with an optical microscope, so there is no difficulty in measuring the Raman spectrum. However, it is difficult to identify the uraninite scattered in micrometer sizes only with a Raman microscope. In this case, the location of uraninite was first confirmed using SEM-EDS, and then the sample was transferred to the Raman microscope to measure the Raman spectrum. In particular, a qualitative analysis of the oxidation and lattice conditions of natural uraninite was attempted by comparing the Raman properties of a micrometer-sized natural uraninite and a laboratory-synthesized UO2 pellet. Significantly different T2g/2LO Raman intensity ratio was observed in the two samples, which indicates that there are defects in the lattice structure of natural uraninite. In addition, no uranyl mineral phases were observed due to the deterioration of natural uraninite. This result suggests that the uranium deposit is maintained in a reduced state. Rutile is also scattered in micrometer-sizes, similar to uraninite. The Raman spectrum of rutile is similar in shape to that of uraninite, making them confused. The Raman spectral differences between these two minerals were compared in detail.
        9.
        2023.11 구독 인증기관·개인회원 무료
        Uranium (U) is a hazardous material that can lead to both chemical and radiological toxicity, including kidney damage and health issues associated with radiation exposure. In South Korea. In Korea, where shallow weathered granitic aquifers are widespread, several previous studies have reported high levels of radioactivity in shallow groundwater. This ultimately led to the closure of 60 out of 4,140 groundwater production wells in South Korea. In this study, we examined aquifers currently dedicated to drinking water supply and investigated a dataset of 11,225 records encompassing 103 environmental parameters, based on the random forest classifier. This dataset comprises 80 physical parameters associated with the hydraulic system and 23 chemical parameters linked to water-rock interactions. Among the hydraulic parameters, the presence of a coarse loamy texture in the subsoil displayed a notable positive relationship with the concentration of uranium, implying that it plays a significant role in forming redox conditions for the leaching of uranium from host rocks. Fluorine (F), a major product of water-rock interaction in granitic aquifers, exhibited a positive correlation with the distribution of uranium concentrations. The positive relationship between F concentration and uranium levels suggests that the dissolved uranium originates from groundwater interacting with granites. In conclusion, our findings indicate that two key factors, namely the infiltration capacity of soil layers and the aqueous speciation in groundwater resulting from interactions with local solids, play important roles in determining uranium concentrations in granitic aquifers.
        10.
        2023.11 구독 인증기관·개인회원 무료
        The solid-state chemistry of uranium is essential to the nuclear fuel cycle. Uranyl nitrate is a key compound that is produced at various stages of the nuclear fuel cycle, both in front-end and backend cycles. It is typically formed by dissolving spent nuclear fuel in nitric acid or through a wet conversion process for the preparation of UF6. Additionally, uranium oxides are a primary consideration in the nuclear fuel cycle because they are the most commonly used nuclear fuel in commercial nuclear reactors. Therefore, it is crucial to understand the oxidation and thermal behavior of uranium oxides and uranyl nitrates. Under the ‘2023 Nuclear Global Researcher Training Program for the Back-end Nuclear Fuel Cycle,’ supported by KONICOF, several experiments were conducted at IMRAM (Institute of Multidisciplinary Research for Advanced Materials) at Tohoku University. First, the recovery ratio of uranium was analyzed during the synthesis of uranyl nitrate by dissolving the actual radioisotope, U3O8, in a nitric acid solution. Second, thermogravimetric-differential thermal analysis (TG-DTA) of uranyl nitrate (UO2(NO3)2) and hyper-stoichiometric uranium dioxide (UO2+X) was performed. The enthalpy change was discussed to confirm the mechanism of thermal decomposition of uranyl nitrate under heating conditions and to determine the chemical hydrate form of uranyl nitrate. In the case of UO2+X, the value of ‘x’ was determined through the calculation of weight change data, and the initial form was verified using the phase diagram for the U-O system. Finally, the formation of a few UO2+X compounds was observed with heat treatment of uranyl nitrate and uranium dioxide at different temperature intervals (450°C-600°C). As a result of these studies, a deeper understanding of the thermal and chemical behavior of uranium compounds was achieved. This knowledge is vital for improving the efficiency and safety of nuclear fuel cycle processes and contributes to advancements in nuclear science and technology.
        11.
        2023.11 구독 인증기관·개인회원 무료
        Currently, the Korea Atomic Energy Research Institute is conducting research on the development of technology to reduce the disposal area for SF (Spent nuclear Fuel). If the main radionuclides contained in SF can be separated and recovered according to their characteristics (long half-life, high mobility and high heat load) and uranium oxide which is expected to be the final residue, can be made into solids, the burden of the permanent disposal area of the SF will be greatly reduced. The waste form that end up in the repository must be verified for ease of manufacture and stability of the block. And, in order to increase the loading efficiency, a large block manufacturing technology is needed. This study describes the background of introducing PSA (Particle Size Analyzer) which is one of the necessary equipment for manufacturing UO2 blocks using slip casting, the method of using the equipment and performance verification of the equipment using standard samples. The particle size affects the sintering quality by the way the particles rearrange themselves during sintering. Powders of small particles are generally less free flowing and more difficult to compress, they form thin pores between the particles and sinter to higher density. In contrast, larger particle has a lower sintered density. Therefore, accurate particle size measurement and the selection of a suitable particle size are important. For this purpose, a PSA was installed in nuclear cycle experiment research center. To verify the performance of the equipment, a standard sample of 1.025 μm was analyzed. We got an average particle size of 1.0293 μm and standard deviation of 0.0668 μm. This value was within the uncertainty(±0.018 μm) of the sample’s certificate. In the future, this equipment will measure the size of UO2 (depleted uranium) powder and to produce large scale uranium oxide blocks.
        12.
        2023.11 구독 인증기관·개인회원 무료
        Once discharged, spent nuclear fuel undergoes an initial cooling process within deactivation pools situated at the reactor site. This cooling step is crucial for reducing the fuel’s temperature. Once the heat has sufficiently diminished, two viable options emerge: reprocessing or interim storage. A method known as PUREX, for aqueous nuclear reprocessing, involves a chemical procedure aimed at separating uranium and plutonium from the spent nuclear fuel. This separation not only minimizes waste volume but also facilitates the reuse of the extracted materials as fuel for nuclear reactors. The transformation of uranium oxides through dissolution in nitric acid followed by drying results in uranium taking the form of UO2(NO3)2 + 6H2O, which can then be converted into various solid-state configurations through different heat treatments. This study specifically focuses on investigating the phase transitions of artificially synthesized UO2(NO3)2 + 6H2O subjected to heat treatment at various temperatures (450, 500, 550, 600°C) using X-ray Diffraction (XRD) analysis. Heat treatments were also conducted on UO2 to analyze its phase transformations. Additionally, the study utilized XRD analysis on an unidentified oxidized uranium oxide, UO2+X, and employed lattice parameters and Bragg’s law to ascertain the oxidation state of the unknown sample. To synthesize UO2(NO3)2 + 6H2O, U3O8 powder is first dissolved in a 20% HNO3 solution. The solid UO2(NO3)2 + 6H2O is obtained after drying on a hotplate and is subsequently subjected to heat treatment at temperatures of 450, 500, 550, and 600°C. As the heat treatment temperature increases, the color of the samples transitions from orange to dark green, indicating the formation of different phases at different temperatures. XRD analysis confirms that uranyl nitrate, when heattreated at 500 and 550°C, oxidizes to UO3, while the sample subjected to 600°C heat treatment transforms into U3O8 due to the higher temperature. All samples exhibit sharp crystal peaks in their XRD spectra, except for the one heat-treated at 450°C. In the second experiment, the XRD spectra of the heat-treated UO2 consistently indicate the presence of U3O8 rather than UO3, regardless of the temperature. Under an oxidizing atmosphere within a temperature range of 300 to 700°C, UO2 can be oxidized to form U3O8. In the final experiment, the oxidation state of the unknown UO2+X was determined using Bragg’s law and lattice parameters, revealing that it was a material in which UO2 had been oxidized, resulting in an oxidation state of UO2.24.
        13.
        2023.11 구독 인증기관·개인회원 무료
        To ensure the long-term supply and sustainability of uranium fuel, exploring alternative resources is essential, particularly considering that terrestrial reserves of uranium are limited (about 4.6 million tons). Since the amount of uranium dissolved in seawater is approximately 1000 times that of terrestrial reserves (i.e., about 4.5 billion tons), uranium extraction from seawater (UES) can be an alternative resource. However, the ultra-low concentration of uranium in seawater (about 3.3 ppb) poses a significant challenge in achieving economic feasibility for UES. This paper introduces case studies on the cost analysis of systems for recovering uranium from seawater, specifically focusing on braided fiber-based adsorbents developed by JAEA and ORNL. The cost analysis has been conducted based on using the deployment of these adsorbents on the bottom of the sea, which is a passive deployment method, thereby reducing the total costs of recovery. The analysis results can be used to identify R&D areas necessary for reducing cost components, making UES economically feasible.
        14.
        2023.11 구독 인증기관·개인회원 무료
        Uranium extraction from seawater has been a topic of considerable interest over the past decades. However, Commercial facilities for uranium extraction from seawater have not yet been constructed due to its lack of economic feasibility. With the increasing demand for sustainable energy sources, there is a growing interest in eco-friendly uranium extraction methods. Despite this, the safeguards associated with these extraction techniques remain relatively under-researched, necessitating comprehensive studies that address both the economic feasibility and safeguards approach. The Korea Hydro & Nuclear Power Central Research Institute is poised to elucidate the economic value of uranium extraction from seawater and embark on research to extract Yellow Cake from seawater on a laboratory scale. Given these advancements, it becomes imperative to consider the approach to safeguards. In this study, a comprehensive review was conducted to understand the relevant regulations that encompass both international obligations in partnership with the IAEA and domestic guidelines, specifically the Nuclear Safety Act. Emphasis was placed on a detailed examination of the IAEA’s comprehensive safeguards agreement and its additional protocol, focusing on deriving the necessary regulatory timings, subjects, and methodologies for effective reporting and verification. We reviewed the safeguards guidelines and the IAEA policy to confirm the international non-proliferation obligations. The study also reviewed the impact of the State-Level Approach promoted by the IAEA and its implications on state-specific factors and evaluations of state technological advancement. Additionally, the regulatory aspects of extracted uranium as an internationally regulated material under the Nuclear Safety Act were critically assessed. In conclusion, this study explains the international and domestic regulatory considerations for uranium extraction from seawater. Ultimately, this study will provide valuable understanding for policymakers, researchers, and practitioners involved in uranium extraction from seawater. Additionally, we expect that this study will contribute to establishing the safeguards approach and regulatory framework for the commercialization of uranium extraction from seawater in the ROK.
        15.
        2023.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To broaden the utilization of nuclear energy, uranium as a fuel should be mined indispensably. Mining accounts for the largest portion of the cost of producing the uranium assembly. Therefore, this study analyzes the trends of uranium prices, which have a significant impacts on the mining cost. Uranium production contributing to the price fluctuations is explained in five periods from 1945 to the present. Moreover, the series of events affecting uranium prices from the 1970s until the present are verified. Among them, the most recent incidents considered in this study are the following: COVID-19 pandemic, Kazakhstan unrest, and Russia-Ukraine war. European countries have started to reconsider the transition to nuclear power to reduce their dependence on Russian oil and gas, which has contributed to the surge in uranium prices. Based on the results of this study, various international issues have been closely associated with the nuclear power industry and uranium, affecting the production of uranium and its price.
        4,000원
        16.
        2023.05 구독 인증기관·개인회원 무료
        Given the limited terrestrial reserves of uranium (approximately 4.6 million tons), exploring alternative resources is necessary to secure a sustainable, long-term supply of nuclear energy. Uranium extraction from seawater (UES) is a potential solution since the amount of uranium dissolved in seawater (approximately 4.5 billion tons) is about 1,000 times that of terrestrial reserves. However, due to the ultra-low concentration of uranium in seawater (approximately 3.3 ppb), making UES economically viable is a challenging task. In this paper, we explore the potential of using thermal discharge from domestic nuclear power plants for uranium extraction. The motivation for this comes from previous research showing that the adsorption capacity of amidoxime-based adsorbents is proportional to the temperature of the seawater in which they are deployed. Specifically, a study conducted in Japan found that a 10°C increase in seawater temperature resulted in a 1.5-fold increase in adsorption capacity.
        17.
        2023.05 구독 인증기관·개인회원 무료
        Confirmation of the thermal behavior of spent fuel is one of the important points in the management of high-level radioactive waste. This is because various fission products exist in spent nuclear fuel, and a management plan according to their behavior is required. Among the fission products, epsilon particles exist in the form of metal deposits and have a great influence on their physical and chemical properties. However, observing the thermal behavior of epsilon particles is important for understanding spent fuel behavior in thermally environment, but it is difficult to maintain a consistent thermal environment. In this work, we report the thermal behaviors study of uranium oxide with epsilon particle using in situ high temperature X-ray diffraction. We measured the variation of temperature on the size of crystalline, which is a cell parameter in the reaction process. And then, the change of lattice parameters is calculated by Rietveld refinement.
        18.
        2023.05 구독 인증기관·개인회원 무료
        Radionuclide analysis methods must be secured in the event of emergencies such as the discovery of unknown nuclear material or nuclear accidents in neighboring countries or Korea. Most institutions in Korea are in their early stages of radionuclide analysis method development and do not even have Radiation Controlled Areas where they can handle the samples safely. Some institutions such as the Korea Atomic Energy Research Institute have the ability to perform radionuclide analysis for nuclear facilities or verification of nuclear activities. In Korea, it is necessary to secure nuclide analysis technology to enable independent verification in times of emergency or need. This paper analyzes uranium as the target nuclide using alpha spectrometer and TIMS. Alpha spectrometer detects alpha particles emitted from uranium samples and measures the concentration of uranium isotopes. This method has a high selectivity that distinguishes it from other elements, and accurate measurements can be made even when uranium samples are mixed with other elements. In addition, there is minimal interference from other radioactive isotopes in the sample, and the sample preparation is simple, resulting in relatively short analysis times. In contrast, TIMS detects ionized uranium ions by heating the uranium sample. This method may have potential interference from other elements and may take relatively longer analysis times. However, TIMS has high sensitivity and accuracy and can detect various elements other than uranium, making it suitable for various analyses. Therefore, when analyzing uranium, it is recommended to select and use the appropriate device according to the purpose, as both alpha spectrometer and TIMS have their pros and cons. Furthermore, by using both devices in parallel, more accurate and reliable results can be obtained. This paper aims to compare the analysis methods of alpha spectrometer and thermal ionization mass spectrometry, which are widely used for nuclide analysis in unknown nuclear materials.
        19.
        2023.05 구독 인증기관·개인회원 무료
        Natural uranium-contaminated soil in Korea Atomic Energy Research Institute (KAERI) was generated by decommissioning of the natural uranium conversion facility in 2010. Some of the contaminated soil was expected to be clearance level, however the disposal cost burden is increasing because it is not classified in advance. In this study, pre-classification method is presented according to the ratio of naturally occurring radioactive material (NORM) and contaminated uranium in the soil. To verify the validity of the method, the verification of the uranium radioactivity concentration estimation method through γ-ray analysis results corrected by self-absorption using MCNP6.2, and the validity of the pre-classification method according to the net peak area ratio were evaluated. Estimating concentration for 238U and 235U with γ-ray analysis using HPGe (GC3018) and MCNP6.2 was verified by 􀟙-spectrometry. The analysis results of different methods were within the deviation range. Clearance screening factors (CSFs) were derived through MCNP6.2, and net peak area ratio were calculated at 295.21 keV, 351.92 keV(214Pb), 609.31 keV, 1120.28 keV, 1764.49 keV(214Bi) of to the 92.59 keV. CSFs for contaminated soil and natural soil were compared with U/Pb ratio. CSFs and radioactivity concentrations were measured, and the deviation from the 60 minute measurement results was compared in natural soil. Pre-classification is possible using by CSFs measured for more than 5 minutes to the average concentration of 214Pb or 214Bi in contaminated soil. In this study, the pre-classification method of clearance determination in contaminated soil was evaluated, and it was relatively accurate in a shorter measurement time than the method using the concentrations. This method is expected to be used as a simple pre-classification method through additional research.
        20.
        2023.05 구독 인증기관·개인회원 무료
        In this study, we evaluated the performance of phosphate-functionalized silica in adsorbing uranium and provided insights into optimizing the initial conditions of the uranium solution (concentration and pH), which are often overlooked in uranium adsorption studies. While most studies take into account the effect of pH on both the surface charge of the adsorbents and the dissolved speciation of uranium in solution, they often overlook the formation of solid phases such as β-UO2(OH)2 (cr) and UO3· 2H2O(cr), leading to an overestimation of the adsorption capacity. To address this issue, we considered the speciation of U(VI) calculated using thermodynamic data. Our findings suggest that it is reasonable to evaluate the adsorption performance at pH 4 and concentration below 1.35 mM. The formation of β-UO2(OH)2 (cr) starts at 23 μM (pH 5) and 1 μM (pH 6) and increases sharply with increasing concentration. To avoid interference from the formation of solid phases, experiments should be conducted at lower concentrations, which in turn require very small msorbent/Vsolution ratios. However, controlling small amounts of sorbent can be challenging, and increasing the volume of the solution can generate significant amounts of radioactive waste. We also used UV-vis spectra analysis to investigate the formation of solid phases. We found that a 100 mg L-1 uranium solution resulted in the formation of colloidal particles in the solid phase after 2.5 hours at pH 6, while at pH 4, no significant changes in absorbance were observed over 120 hours, indicating a stable ion phase. Based on these conditions, we obtained an excellent adsorption capacity of 110 mg g-1.
        1 2 3 4 5