Canine parvovirus (CPV) remains a leading infectious cause of death in canines, especially in young puppies. Though vaccination is being carried out regularly, immunization failures occur, and puppies may be exposed to infection. Virus-like particles (VLPs) act like a subunit vaccine, mimicking the structure of authentic viruses. Therefore, VLPs have the potential to be used as vaccine candidates. Since Viral Protein 2 (VP2), a major structural protein of CPV, is the crucial antigen for CPV, the purpose of this study was to produce a recombinant VP2 of new canine parvovirus-2a using the baculovirus expression system in SF9 insect cells. The results revealed that recombinant VP2 assembles to form VLPs with antigenic properties similar to those of natural CPV, the recombinant VLP can produce a hemagglutination assay (HA) titer (1:210) in SF9 cells. Expression of the recombinant 6-His-tagged VP2 in SF9 cells was confirmed by western blotting. These findings suggest that the recombinant VP2 expressed in this study could be used as an efficient subunit vaccine against CPV infection.
시스타틴(cystatin: CST)은 C1A류 시스테인 단백질분해효소에 대한 경쟁적 가역억제자로서 동식물류에서 파파인과 같은 캐셉신을 억제 대상으로 작용하게 된다. 바이러스 유래 CST (CpBV-CST1)이 폴리드나바이러스의 일종인 CpBV (Cotesia plutellae bracovirus)에서 동정되었 다. 기존 연구는 이 유전자의 과발현이 배추좀나방(Plutella xylostella) 유충의 면역 및 발육을 교란한다는 것을 보여 주었다. 본 연구는 이 유전자 의 단백질 기능을 분석하기 위해 세균발현시스템을 이용하여 재조합단백질(rCpBV-CST1)을 형성하여 단백질분해효소에 대한 활성억제효과를 결정하고, 곤충의 면역과 발육에 대한 생리적 억제효과를 분석했다. 이 유전자 번역부위는 138 개 아미노산으로 약 15 kDa 크기의 단백질로 추 정되었다. CpBV-CST1이 먼저 pGEX 발현벡터에 재조합되고, BL21 STAR (DE3) competent cells에 형질전환된 후 0.5 mM IPTG로 4 시 간동안 과발현되었다. 분리된 재조합단백질은 파파인에 대한 뚜렷한 억제효과를 나타냈다. 이 재조합단백질은 파밤나방(Spodoptera exigua)에 대 해서 혈구소낭형성의 세포성 면역반응을 억제하고, 경구로 처리할 때 배추좀나방의 유충발육을 처리 농도에 비례하여 제한시켰다. 이상의 결과 는 CpBV-CST1이 해충 밀도 억제에 응용될 수 있음을 제시하고 있다.
Cystatins (CSTs) are reversible and competitive inhibitors of C1A cysteine proteases, corresponding to papain-like cathepsins in plants and animals. A viral CST (CpBV-CST1) was identified from a polydnavirus, Cotesia plutellae bracovirus. Our previous study indicated that overexpression of CpBV-CST1 interfered with immune response and development of Plutella xylostella larvae. This study produced a recombinant CpBV-CST1 protein (rCpBV-CST1) using bacterial expression system to analyze its inhibitory activity against cysteine protease and physiological role in the parasitism of an endoparsitoid wasp, Cotesia plutellae. The open reading frame (ORF) of CpBV-CST1 encodes a polypeptide of 138 amino acids (15 kDa). rCpBV-cystatin protein in BL21 STAR (DE3) competent cells containing a recombinant pGEX4T-3:CpBV-CST1 was overexpressed by 0.5 mM IPTG for 4 h. In biological activity assay, partially purified GST-fused rCpBV-CST1 showed inhibitory activity against papain. It also inhibited larval development of P. xylostella in a dose-dependent manner. These results suggest that CpBV-CST1 plays a role in retardation of larval development of P. xylostella during parasitism.
A polydnavirus, Cotesia plutellae bracovirus (CpBV), is symbiotic to an endoparasitoid wasp, C.plutellae, which specifically parasitizes young larvae of the diamondback moth, Plutella xylostella. A recent study on CpBV replication by analysis of ovary transcriptome of C.Plutellae suggests several candidate coat protein genes. This study was conducted to confirm the coat protein genes by analyzing coat proteins of CpBV viral particles by a tandem mass MALDI-TOF. Immunoprecipitation of ovary protein extract with a polyclonal CpBV antibody captured three proteins named as p35, p60, and p70. More number of coat proteins were resolved in a protein extract directly from viral particles. All candidate coat proteins are analyzed in amino acid sequences by MALDI-TOF. A comprehensive analysis of viral proteomics and ovary transcriptome determined novel viral coat proteins from CpBV