Cobalt coated tungsten carbide-cobalt composite powder has been prepared through wet chemical reductionmethod. The cobalt sulfate solution was converted to the cobalt chloride then the cobalt hydroxide. The tungsten carbidepowders were added in to the cobalt hydroxide, the cobalt hydroxide was reduced and coated over tungsten carbidepowder using hypo-phosphorous acid. Both the cobalt and the tungsten carbide phase peaks were evident in the tungstencarbide-cobalt composite powder by X-ray diffraction. The average particle size measured via scanning electron micro-scope, particle size analysis was around 380 nm and the thickness of coated cobalt was determined to be 30~40 nm bytransmission electron microscopy.
Spherical nanosized cobalt powder with an average size of 150-400 nm was successfully prepared at room temperature from cobalt sulfate heptahydrate (). Wet chemical reduction method was adopted to synthesize nano cobalt powder and hypophosphorous acid () was used as reduction agent. Both the HCP and the FCC Co phase were developed while concentration ranged from 0.7 M to 1.1 M. Secondary phase such as and were also observed. Peaks for the crystalline Co phase having HCP and FCC structure crystallized as increasing the concentration of , indicating that the amount of reduction agent was enough to reduce . Consequently, a homogeneous Co phase could be developed without second phase when the ratio exceeded 7.
Ag powder was prepared from by wet chemical reduction method using various reduction agent system involving , (AgCl) and Ag complex ion aqueous solution. The pure Ag powder could be prepared regardless of reaction system but the particle shape and distribution were affected very much according to the kind of reduction agents and reaction systems. The optimum reaction system for the preparation of the silver powder having the uniform particle shape and size distribution was Ag complex ion aqueous solution-reduction agent system and in particular, and as a reduction agent leaded the more uniform particle shape and size distribution