본 연구는 비만아동의 골격성숙도가 정상 아동들 보다 높고 성조숙증으로 이어질 확률이 높은 것을 문제점으로 삼아 비만아동의 골격성숙도에 따른 체격 및 체력의 관계를 규명함으로써 비만아동의 건 강증진에 기여하는 것을 목적으로 하였다. 연구대상은 10세부터 13세의 비만아동 총 243명을 대상으로 생 물학적 성숙지표를 나타내는 골격성숙도는 X-ray 촬영 후 TW3 방법을 이용하여 평가하였고, 골격성숙도 에 따른 미숙집단(n=70), 보통집단(n=128), 조숙집단(n=45)으로 나누었다. 체격은 신장계, InBody 270(Biospace, Korea)을 이용하여 3개 항목을 측정하였다. 체력측정은 총 7개 항목으로 근력, 근지구력, 유 연성, 순발력, 심폐지구력, 평형성, 민첩성을 측정하였다. 자료처리는 SPSS 25.0을 사용하여 기술통계, 일원 변량분석(ANOVA)을 실시하였고, 사후검정은 Duncan's multiple range 방법을 이용하였으며, P< .05 수 준에서 유의한 것으로 간주하였다. 본 연구의 결과는 다음과 같다. 첫째, 골격성숙도에 따른 신장과 체중의 체격 요인에서 남자와 여자 미숙집단, 보통집단, 조숙집단 간 통계적으로 매우 유의한 차이를 보였다. 둘째, 골격성숙도에 따른 체력 비교에서 남자의 경우 근력, 순발력, 민첩성에서 유의한 차이가 나타났으며, 여자 의 경우 근력, 평형성에서 유의한 차이가 나타났다.
When producing rice products, it is very important to select suitable raw materials. Therefore, in this study, the quality characteristics of 16 rice cultivars were quantified to determine the criteria for evaluating the machinability of raw rice. The L value, which can affect the color of porridge prepared from rice, was the greatest for Hwaseonchalbyeo (84.17). The water-binding capacity, related to water interaction, was high in Hyangcheola (113.2%), and water solubility was high in Shingil (22.3%). Dodamssal (42.3%, 70.7 RVU) and Hwaseonchalbyeo (4.7%, 27.8 RVU) showed lower final viscosity compared to the cultivars in which the amylose content was medium groups (16.4~21.2%, 173.6~277.2 RVU). Specifically, cultivars with high or low amylose content had a low viscosity. The characteristics of the distribution of raw rice quality data were confirmed through 11 histograms. Furthermore, amylose content vs. water solubility, water solubility vs. peak viscosity, and peak viscosity vs. final viscosity showed high correlations (r=0.542, -0.569, and 0.836 respectively, p<0.01), and clear cultivar discrimination by the standard error of the mean (0.765~10.811). In conclusion, amylose content, water solubility, and peak viscosity were considered the most suitable characteristics for the quality evaluation of raw rice.
This study simulated strong ground motion waveforms in the southern Korean Peninsula, based on the physical earthquake modeling of the Southern California Earthquake Center (SCEC) BroadBand Platform (BBP). Characteristics of intensity attenuation were investigated for M 6.0-7.0 events, incorporating the site effects. The SCEC BBP is software generates broadband (0-10 Hz) ground-motion waveforms for earthquake scenarios. Among five available modeling methods in the v16.5 platform, we used the Song Model. Approximately 50 earthquake scenarios each were simulated for M 6.0, 6.5, and 7.0 events. Representative metrics such as peak ground acceleration (PGA) and peak ground velocity (PGV) were obtained from the synthetic waveforms that were simulated before and after the consideration of site effects (VS30). They were then empirically converted to distribution of instrumental intensity. The intensity that considers the site effects is amplified at low rather than high VS30 zones.
A heavy (93 mm hr−1) rainfall event accompanied by lightning occurred over Gangneung in the Yeongdong region of South Korea on August 6, 2018. This study investigated the underlying mechanism for the heavy rainfall event by using COMS satellite cloud products, surface- and upper-level weather charts, ECMWF reanalysis data, and radiosonde data. The COMS satellite cloud products showed rainfall exceeding 10 mm hr−1, with the lowest cloud-top temperature of approximately −65oC and high cloud optical thickness of approximately 20-25. The radiosonde data showed the existence of strong vertical wind shear between the upper and lower cloud layers. Furthermore, a strong inversion in the equivalent potential temperature was observed at a pressure altitude of 700 hPa. In addition, there was a highly developed cloud layer at a height of 13 km, corresponding with the vertical analysis of the ECMWF data. This demonstrated the increased atmospheric instability induced by the vertical differences in equivalent potential temperature in the Yeongdong region. Consequently, cold, dry air was trapped within relatively warm, humid air in the upper atmosphere over the East Sea and adjacent Yeongdong region. This caused unstable atmospheric conditions that led to rapidly developing convective clouds and heavy rainfall over Gangneung.
The directed energy deposition (DED) process of metal 3D printing technologies has been treated as an effective method for welding, repairing, and even 3-dimensional building of machinery parts. In this study, stainless steel 316L (STS316L) and Inconel 625 (IN625) alloy powders are additively manufactured using the DED process, and the microstructure of the fabricated STS316L/IN625 sample is investigated. In particular, there are no secondary phases in the interface between STS316L and the IN625 alloy. The EDS and Vickers hardness results clearly show compositionally and mechanically transient layers a few tens of micrometers in thickness. Interestingly, several cracks are only observed in the STS 316L rather than in the IN625 alloy near the interface. In addition, small-sized voids 200– 400 nm in diameter that look like trapped pores are present in both materials. The cracks present near the interface are formed by tensile stress in STS316L caused by the difference in the CTE (coefficient of thermal expansion) between the two materials during the DED process. These results can provide fundamental information for the fabrication of machinery parts that require joining of two materials, such as valves.
Odor emitted from the degradation process of food waste is a common cause of public complaints, and appropriate odor treatment methods need to be implemented. In this study, a hybrid plasma catalyst system was applied to treat individual odorous compounds including acetaldehyde and hydrogen sulfide, which are known to be major odor compounds produced from food waste. MnOx catalysts were prepared by varying Mn/support loading ratios, and surface analyses showed that the Mn_5% catalyst achieved the highest performance because dominant manganese oxide species on the surface of the catalyst was found to be Mn2O3, Using the catalyst, the removal rate of hydrogen sulfide steadily increased as the space velocity in the MnOx catalyst reactor decreased. Meanwhile, the removal rate of acetaldehyde did not increase significantly when decreasing the space velocity more than 24,000 hr-1. Following the catalyst experiments using the individual odorous compounds, the hybrid system was applied for testing odor treatment of actual food waste. The actual food waste study showed that both hydrogen sulfide and acetaldehyde were steadily removed; hydrogen sulfide was removed almost completely during the initial 30-minute period, while the acetaldehyde removal was started after the decrease of hydrogen sulfide. In addition, it was confirmed that the dilution-to-threshold for odor reduced from 2,080 D/T to 300 D/T during the initial period. In conclusion, the plasma and Mn2O3 catalyst system can be applied in food waste collection containers to effectively control odor problems.
This study classified outer-ring galaxies using 25,308 galaxies within z=0.05 from the SDSS DR7, which are larger than Rpet>6 arcsec and whose minor-to-major axis ratio (b/a)<0.6. We selected 531 galaxies that have ring-like structures by visual inspection of the color images of 25,308 galaxies; these galaxies with ring-like structures served as a primary sample from which we selected 90 outer-ring galaxies. The final sample of 69 outer-ring galaxies was selected by examining the photometric properties of the candidate galaxies. Their properties were determined by conducting surface photometry on their u, g, r, i, and z images. The frequency of the outer-ring galaxies was found to be 0.3% of the local galaxies. We examined the environment of the outer-ring galaxies using two measures of environment, namely, the projected distance to the nearest-neighbor galaxy and the local background density. We did not observe any notable difference between outer-ring and other galactic environments.
A T-800 (Co-Mo-Cr) coating material is fabricated using Co-Mo-Cr powder feedstock and laser cladding. The microstructure and melted Al erosion properties of the laser-cladded T-800 coating material are investigated. The Al erosion properties of the HVOF-sprayed MoB-CoCr and bulk T-800 material are also examined and compared with the laser-cladded T-800 coating material. Co and lave phases (Co2MoCr and Co3Mo2Si) are detected in both the lasercladded T-800 coating and the bulk T-800 materials. However, the sizes of the lave phases are measured as 7.9 μm and 60.6 μm for the laser-cladded and bulk T-800 materials, respectively. After the Al erosion tests, the erosion layer thicknesses of the three materials are measured as 91.50 μm (HVOF MoB-CoCr coating), 204.83 μm (laser cladded T- 800), and 226.33 μm (bulk T-800). In the HVOF MoB-CoCr coating material, coarse cracks and delamination of the coating layer are observed. On the other hand, no cracks or local delamination of the coating layer are detected in the laser T-800 material even after the Al erosion test. Based on the above results, the authors discuss the appropriate material and process that could replace conventional bulk T-800 materials used as molten Al pots.
2 (Langmuir, Freundlich, Elovich, Temkin, and Dubinin-Radushkevich) and 3 (Sips and Redlich-Peterson)-parameter isotherm models were applied to evaluated for the applicability of adsorption of Cu(II) and/or phosphate isotherm using chitosan bead. Non-linear and linear isotherm adsorption were also compared on each parameter with coefficient of determination (R2). Among 2-parameter isotherms, non-linear Langmuir and Freundlich isotherm showed relatively higher R2 and appropriate maximum uptake (qm) than other isotherm equation although linear Dubinin-Radushkevich obtained highest R2. 3-parameter isotherm model demonstrated more reasonable and accuracy results than 2-parmeter isotherm in both non-linear and linear due to the addition of one parameter. The linearization for all of isotherm equation did not increase the applicability of adsorption models when error experiment data was included.