In this study, a bipolar visible light responsive photocatalytic fuel cell (PFC) was constructed by loading a Z-scheme g-C3N4/ carbon black/BiOBr and a Ti3C2/ MoS2 Schottky heterojunction on the carbon brush to prepare the photoanode and photocathode, respectively. It greatly improved the electron transfer and achieved efficient degradation of organic pollutants such as antibiotics and dyes simultaneously in two chambers of the PFC system. The Z-scheme g-C3N4/carbon black/BiOBr formed by adding highly conductive carbon black to g-C3N4/BiOBr not only effectively separates the photogenerated carriers, but also simultaneously retains the high reduction of the conduction band of g-C3N4 and the high oxidation of the valence band of BiOBr, improving the photocatalytic performance. The exceptional performance of Ti3C2/ MoS2 Schottky heterojunction originated from the superior electrical conductivity of Ti3C2 MXene, which facilitated the separation of photogenerated electron–hole pairs. Meanwhile, the synergistic effect of the two photoelectrodes further improved the photocatalytic performance of the PFC system, with degradation rates of 90.9% and 99.9% for 50 mg L− 1 tetracycline hydrochloride (TCH) and 50 mg L− 1 rhodamine-B (RhB), respectively, within 180 min. In addition, it was found that the PFC also exhibited excellent pollutant degradation rates under dark conditions (79.7%, TCH and 97.9%, RhB). This novel pollutant degradation system is expected to provide a new idea for efficient degradation of multiple pollutant simultaneously even in the dark.
Biomass-derived porous carbon is an excellent scientific and technologically interesting material for supercapacitor applications. In this study, we developed biomass-derived nitrogen-doped porous carbon nanosheets (BDPCNS) from cedar cone biomass using a simple KOH activation and pyrolysis method. The BDPCNS was effectively modified at different temperatures of 600 °C, 700 °C, and 800 ℃ under similar conditions. The as-prepared BDPCNS-700 electrode exhibited a high BET surface area of 2883 m2 g− 1 and a total pore volume of 1.26 cm3 g− 1. Additionally, BDPCNS-700 had the highest electrical conductivity (11.03 cm− 1) and highest N-doped content among the different electrode materials. The BDPCNS-700 electrode attained a specific capacitance of 290 F g− 1 at a current density of 1 A g− 1 in a 3 M KOH electrolyte and an excellent longterm electrochemical cycling stability of 93.4% over 1000 cycles. Moreover, the BDPCNS-700 electrode had an excellent energy density (40.27 Wh kg− 1) vs power density (208.19 W kg− 1). These findings indicate that BDPCNS with large surface areas are promising electrode materials for supercapacitors and energy storage systems.
In this study platform, electrocatalytic detection of the antibiotic chloramphenicol (CAP) in phosphate buffer (pH 7) was easily achieved using a carbon paste electrode modified with NiO nanoparticles (note NiO-CPE). The peak reduction potential of chloramphenicol on the modified electrode is at (− 0.60 V/NiO-CPE vs. Ag/AgCl), its electrochemical behavior is completely irreversible, and controlled by adsorption phenomena. An excellent electrocatalytic activity has been demonstrated by the modified elaborated electrode towards the NO2 attracting group on the side chain of chloramphenicol. The structure and chemical composition of the NiO-CPE sensor were analyzed by SEM, and the X-ray diffraction results indicated that nickel oxide microcrystals were formed on the carbon sheets. The electrochemical characteristics of the NiO-CPE sensor were examined by cyclic voltammetry and electrochemical impedance spectroscopy in comparison with the unmodified carbon. Since the DPV technique allows plotting the linearity curve between the electrocatalytic current intensity of the Chloramphenicol peak and their concentration, the proposed sensor showed a remarkable detection limit of 1.08 × 10– 8 mol/L M (S/N = 3) and a wide determination range from 100 to 0.1 μM for Chloramphenicol. The developed sensor was successfully applied in the detection of Chloramphenicol in real samples.
최근 COVID-19로 인해 증가한 급성 폐부전 중증환자 치료를 위한 인공폐 기술의 필요성이 부각되었다. 또한, 빠 르게 진행되고 있는 인구고령화는 인공장기(artificial organ, AO) 기술에 대한 높은 수요를 불가피하게 만들고 있다. 분리막은 폐, 신장, 간 및 췌장을 포함한 많은 AO 기기의 핵심 부품이다. 특히 인공폐(artificial lung, AL) 기술은 지난 50년간 빠르게 발전해왔지만, 장기부전 환자의 생존율은 50% 내외로 여전히 낮은 편이다. 현재 대부분의 AL 관련문헌은 임상결과에 집중되 어 있으며, AL 분리막의 개발연구는 매우 부족한 편이다. 이에 대한 원인 중 하나는 AL 기술이 생명공학을 포함하여 고분자 화학 및 분리공정 기술을 아우르는 융합적 기술개발을 요구하기 때문인 것으로 판단된다. 본 총설에서는 헬스케어산업에서 AL 분리막 기술의 역할과 기술개발이 필요한 난제들을 정리하였다. 특히, 분리막 소재의 혈액적합성, 분리성능, 모듈 디자인 및 공정 구성 측면에서 다양한 연구개발이 필요하다는 부분을 강조하고자 한다.