검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9,685

        1481.
        2022.05 구독 인증기관·개인회원 무료
        After the Fukushima accident in 2011, a huge amount of radioactively contaminated water is being generated by cooling the melted fuel of units 1, 2 and 3. Most of contaminated water is seawater and underwater containing not only salt elements but also nuclear fission products with radioactivity. To treat the contaminated water, Cs/Sr removal facilities such as KURION and SARRY are being operated by TEPCO. Additionally, three ALPS facilities are on operation to meet the regularity standards for discharge to the sea. However, massive secondary wastes such as Zeolite, sludge and adsorbent is being generated by these facilities for liquid water treatment. The secondary wastes containing various radionuclide with Cs and Sr is difficult to store due to highly radioactive concentration and corrosive properties. In Japan, a variety of technologies such as GeoMelt vitrification, In-Can vitrification and CCIM vitrification is considered as a promising solution. In this study, they were reviewed, and the advantage and disadvantage of each technology were evaluated as the candidate technologies for thermal treatment of sludge radwaste.
        1482.
        2022.05 구독 인증기관·개인회원 무료
        In KHNP CRI, the 100 kW PTM (plasma torch melting) system was designed for the treatment and disposal technology of various radioactive wastes including the metal, concrete, liquid waste and insulator. The facility consists of melting chamber, thermal decomposition chamber, waste feeding system and off-gas treatment system. In this study, to evaluate the applicability of the PTM system, demonstration test was conducted using the radiation hazmat suit as combustible waste. The plasma melting chamber is pre-heated by 2nd combustion device and plasma torch for 5 hours. The temperature inside the plasma melting chamber is approximately 1,600°C. The combustible waste was put into the melting chamber by the pusher feeding device with the throughput of maximum 50 kg/hour. During the test, the power of plasma torch is 60–96 kW on the transferred mod. It was evaluated in terms of long-term integrity of PTM system on operation according to the waste throughput ratio.
        1483.
        2022.05 구독 인증기관·개인회원 무료
        Plasma melting technology has been considered as promising technology for treatment of radioactive wastes. According to the IAEA TECDOC-1527 report (2006), the technology has an advantage that it can treat regardless of waste types which is both combustible and non-combustible wastes. In particular, it is expected that a large amount of concrete, a representative non-combustible wastes, will be generated during the operation and dismantling of nuclear power plants. In order to treat the concrete waste in plasma torch melting system, various factors could be considered like the slag of electric conductivity, viscosity and melting temperature. Above all, as a critical factor, the viscosity of the melt is very important to easily discharge the melt. The viscosity of slag (SiO2-CaO-Al2O3 system) can be lowered by adding a basic oxide such as CaO, Na2O, MgO and MnO. The basic oxides are donors of oxygen ions. These oxides are called notwork breakers, because they destroy the network of SiO2 by reacting with it. In this study, the slag composition of the concrete waste was developed to apply the plasma torch melting. Also, demonstration test was performed with the developed slag composition and 100 kW plasma torch melting system.
        1484.
        2022.05 구독 인증기관·개인회원 무료
        The feasibility study of synthesizing graphene quantum dots from spent resin, which is used in nuclear power plants to purify the liquid radioactive waste, was conducted. Owing to radiation safety and regulatory issues, an uncontaminated ion-exchange resin, IRN150 H/OH, prior to its use in a nuclear power plant, was used as the material of experiment on synthesis of graphene quantum dots. Since the major radionuclides in spent resin are treated by thermal decomposition, prior to conducting the experiment, carbonization of ion-exchange resin was performed. The experiment on synthesis of graphene quantum dots was conducted according to the general hydrothermal/solvothermal synthesis method as follows. The carbonized ion-exchange resin was added to a solution, which is a mixture of sulfuric acid and nitric acid in ratio of 3:1, and graphene quantum dots were synthesized at 115°C for 48 hours. After synthesizing, procedure, such as purifying, filtering, evaporating were conducted to remove residual acid from the graphene quantum dots. After freeze-drying which is the last procedure, the graphene quantum dots were obtained. The obtained graphene quantum dots were characterized using atomic force microscopy (AFM), Fourier-transform infrared (FT-IR) spectroscopy and Raman spectroscopy. The AFM image demonstrates the topographic morphology of obtained graphene quantum dots, the heights of which range from 0.4 to 3 nm, corresponding to 1–4 graphene layers, and the step height is approximately 2–2.5 nm. Using FT-IR, the functional groups in obtained graphene quantum dots were detected. The stretching vibrations of hydroxyl group at 3,420 cm−1, carboxylic acid (C=O) at 1,751 cm−1, C-OH at 1,445 cm−1, and C-O at 1,054 cm−1. The identified functional groups of obtained graphene quantum dots matched the functional groups which are present if it is a graphene quantum dot. In Raman spectrum, the D and G peaks, which are the characteristics of graphene quantum dots, were detected at wavenumbers of 1,380 cm−1 and 1,580 cm−1, respectively. Thus, it was verified that the graphene quantum dots could be successfully synthesized from the ionexchange resin.
        1485.
        2022.05 구독 인증기관·개인회원 무료
        The mixing powder of vitrification material and metallic oxide sludge was solidified by hot isostatic press method and was tested to check whether the solidified waste disposal acceptance criteria were met or not. From various contaminated tank in nuclear power plants, and other nuclear energy facilities, radioactive sludge based on metallic oxide can be generated. The most of tank consist of stainless steel can be oxidated by the long-term exposure on oxygen and moisture, and then can be made sludge layer based on metallic oxide on the inner wall of contaminated tank. Radioactive sludge waste should be solidified and disposed. Melting and hardening is the most basic method for solidification. The melting points of metallic oxide of stainless steel as Fe3O4, NiO, Cr2O3 are 1597, 1955, 2435, respectively. Those are very high temperature. To melt these metallic oxides, a furnace capable of raising the temperature to a very high temperature is required, which requires a lot of thermal energy, which may lead to an increase in disposal cost. Therefore, it is necessary to lower the melting point and solidify non-melted metallic oxide powder by adding vitrifying material powder as Na2O, SiO2, B2O3. The more vitrification material is added, the easier it is to solidify the sludge based on metallic powder at a low temperature, but there is a problem in that the total waste volume increases due to the addition of vitrification material. In this study, the mixing ratio and temperature conditions that can fix the sludge while adding a minimum amount of vitrification material will be confirmed. Mixing ratio conditions of the vitrification material and sludge powder are 10:90, 15:85, 20:80, 25:75. To fix the metallic oxide sludge by melting only the vitrification material without completely melting the metallic oxide, compression by external pressure is required. Therefore, the HIP (Hot Isostatic Pressing) method was used to solidify the metallic oxide sludge by simultaneously heating and pressurizing it. Because the softening points of most of vitrification based on Na2O, SiO2, B2O3 are ranged from 800 to 1000, temperature conditions are 800, 900, 1000. Since the compressive strength for disposing of the solidified materials was 3.4 MPa, the maximum pressure condition was set to 5000 psi (about 34 MPa), which is 10 times 3.4 MPa. And optimal mixing ratio, temperature, pressure conditions that meet the solidified waste disposal acceptance criteria will be found.
        1486.
        2022.05 구독 인증기관·개인회원 무료
        According to the Atomic Energy Act of Korea, radioactive waste can be cleared when it meets the criteria, less than 10 uSv·y−1 for individual dose and 1 person · Sv·y−1 for collective dose. Consequently, it is necessary to evaluate radiation dose to get permission for regulatory clearance from the regulatory body of Korea. Several computational programs can be used for dose calculation depending on disposal methods such as landfill, incineration, and recycling. As for incineration, the effects of radionuclide emitted during combusting radwaste have to be considered to figure out exposure dose. In this study, GASPAR code is described to assess exposure dose from effluents released to the atmosphere during incinerating combustible radioactive wastes for regulatory clearance. GASPAR is the code programmed by Radiation Safety Information Computational Center at Oak Ridge National Laboratory for computing annual dose due to radioactive effluents released from a nuclear power plant to the atmosphere during routine operation. The calculating methods of the code are based on the mathematical model of U.S. NRC regulatory guide 1.109, about beta and gamma radiation from noble gas in semi-infinite plume, radioiodine, and particulates. GASPAR evaluates both individual dose and population dose. The considering pathways are composed of external exposure by plume and ground deposition of effluents, and internal exposure as a result of inhalation and food ingestion. Since the calculation model of GASPAR requires various variables about the radionuclide and disposal site, the accuracy of the results is decided by inputted values. The program contains the default values to parameters such as the humidity, fraction of deposition, and storage time of foods. However, to get permission, it is important to use the appropriate data representing the condition of the combustion scenario as substitutes for the default since the values are localized to the country where the code was developed. Therefore, dose assessment by GASPAR code can be applied for regulatory clearance by incineration, when reliable values depending on the disposal plan inputted.
        1487.
        2022.05 구독 인증기관·개인회원 무료
        During the operation or decommission of nuclear facilities, a large amount of dry active waste and cable waste with various shape and material is generated. Most of these wastes have almost no radioactive contamination and can be disposed of by incineration, landfill, recycling, etc. under clearance regulation. For clearance of radioactive waste, it is necessary to verify the characteristics of radiological contamination and prove that it meets the criteria for clearance regulation. According to the domestic clearance regulation, if it is difficult to measure radioactivity of wastes due to their surface condition using direct or indirect measurement methods, representative samples should be collected and analyzed for radioactivity. When sampling, it is desirable to collect samples of about 1 kg that can represent waste contamination per 200 kg or per 1 m2, and the homogeneity of the samples also should be demonstrated. However, in the case of dry active wastes, it is very difficult to prove the homogeneity of the samples because of surface shapes and conditions of the wastes. In particular, considering cable waste generated during the decommission, it is hardly capable to prove the representativeness of the sample, even though the inner shell of the covering material and the copper wire are almost uncontaminated. In this study, we show the development of a treatment system that makes it easy to prove the representativeness of samples when disposing of dry active waste or cable waste generated in nuclear facilities. The treatment device is designed in such a way that it has different storage unit and cutting unit suitable for the material characteristics of each waste type (soft, hard and cable), and therefore optimizes the efficiency of the shredding or cutting process. In addition, it is expected that the work efficiency in the radioactive treatment site with a narrow area can also be improved by providing a moving part on the device.
        1488.
        2022.05 구독 인증기관·개인회원 무료
        It has been discovered that the isosaccharinic acid (ISA) formed in a cellulose degradation leachate were capable of forming soluble complexes with thorium, uranium (IV) and plutonium. Since 1993, the ISA has received particular attention in the literature due to its ability to complex a range of radionuclides, potentially affecting the migration of radionuclides. ISA is formed as a result of interactions between cellulosic materials within the waste inventory and the alkalinity resulting from the use of cementitious materials in the construction of the repository. In an alkaline cementitious environment, cellulose degrades mainly via a peeling-off reaction. The main degradation product is ISA, a polyhydroxy type of ligand forming stable complexes with tri- and tetravalent radionuclides. ISA can have an adverse effect on the sorption of radionuclides to an extent which depends on its concentration in the cement pore water and potentially enhance their mobility. The concentration of ISA is governed by several factors such as cellulose loading, cement porosity, extent of cellulose degradation, etc. The sorption of ISA on cement, however, is the process which governs the concentration of ISA in the pore water. According to the experimental result from a literature, the ISA concentration in facilities with a cellulose loading of 5% is calculated to be of the order of 10−4 M. At this level, the effect of cellulose degradation products on radionuclide sorption is negligibly small. Recently in Korea, cellulous limits as waste acceptance criteria is studying and planning to prepare the detailed requirement for near surface radioactive waste disposal facilities. It is desirable to suggest consideration on cellulose disposal limits around the time that the regulatory body and concern organizations establish the cellulose disposal limits as follows. Firstly, identify the cellulose effect on the sorption of the nuclides as cementitious disposal environments such as affected nuclides, threshold value and contribution to radiological risks under domestic disposal environment. Secondly, make sure and consider the difference between lab-scale experimental conditions and probability occurring in real disposal conditions such as probability for generation and persistence of pH in cellulosic material disposal conditions and cellulosic material disposal methods. Finally, consider characterization of cellulosic material such as polymerization, contents of cellulose in law material and time of degradation process. As a result, desirable cellulose limits are to set up for both safety and economic aspect.
        1489.
        2022.05 구독 인증기관·개인회원 무료
        During decommissioning of a nuclear power plant, a large amount of radioactive waste is produced, and it is known to cost more than 300 billion won to dispose the waste. To reduce the disposal cost, it is essential to minimize the number of radioactive waste drums, which can be achieved by detecting and removing hotspot contaminations in the radioactive waste drums. Therefore, a Compton CT system for radioactive waste monitoring is under development, which provides the images of both the internal structure of the drum and the radioactive hotspot(s) in the drum. Based on the acquired information, the activity of hotspots can be estimated. The performance of the system is affected by various geometry factors. Therefore, it is essential to determine optimal configuration by evaluating the effects of the factors on the performance of the system. In the present study, we determined the optimum value of the factors and then predicted the performance of the optimized system by using a simulator based on the Geant4 Monte Carlo simulation. For optimization, the factors were evaluated in terms of structural similarity index measure (SSIM) and measurement time. The considered factors were the activity of the CT source, source to object distance (SOD), object to detector distance (ODD), and projection angle. The simulation result showed that the activities of the CT sources were determined as 23 mCi for 137Cs and 9.6 mCi for 60Co. The optimal SOD and ODD were 180 cm and 40 cm, respectively. The optimal projection angle was evaluated as 4° since it achieves the SSIM of 0.95 faster than other projection angles. With the optimized parameters, the performance of the system was evaluated using the IAEA gamma CT standard phantom containing a hotspot of 137Cs (7.02 μCi). The Compton image was reconstructed using the back-projection algorithm, and the CT image was reconstructed using the filtered back-projection algorithm. The result showed that the location of the hotspot in the Compton image was well identified at the true position. The acquired CT image also well represented the internal structure of the phantom, and the estimated mean linear attenuation coefficient value (μ= 0.0789 cm−1) of the phantom was close to the true value (μ= 0.0752 cm−1). In addition, the hotspot activity estimated by combining the information of the Compton image and CT image was 8.06 μCi. Hence, it was found that the Compton CT system provides essential information for radioactive waste drums.
        1490.
        2022.05 구독 인증기관·개인회원 무료
        The safety assessment of a geological disposal system is performed over a period of hundreds of thousands of years, during which the activity of radionuclides in spent nuclear fuel decreases to natural radioactivity levels. During this period, the biosphere also experiences the long-term evolution of the surface environment including climate, terrain, and ecosystem changes. These changes cause changes in the water balance, which in turn change the pathways of radionuclides in the subsurface. Therefore, it is essential to consider these long-term changes in the surface environment for a reasonable biosphere safety assessment. For this purpose, this study developed the biosphere assessment module considering the long-term evolution of the surface environment, as a sub-module of APro (Adaptive process-based total system performance assessment framework). As a preceding study, the biosphere assessment module was previously developed using COMSOL for hydraulic and radionuclide transport processes, to simulate the pathway of radionuclides traveling from the shallow aquifer to the surface water body and soil. To consider the long-term evolution of the surface environment, the previous module needed to be improved to apply different water balances as boundary conditions of the module at each snapshot, which is a sub-time period divided based on the surface evolution data. To this end, this study utilized SWAT (Soil and Water Assessment Tool) which calculates the water balance using the surface environmental data including climate, terrain, land cover, and soil type. Conceptually, SWAT calculated annual water balance considering surface environmental changes, and certain components (i.e., groundwater recharge and hydraulic head of water bodies) of water balance were transferred to COMSOL as external data to simulate the pathway of radionuclide transport and spatio-temporal variability of radionuclides. At the current stage, the biosphere computational module has been developed to correspond to its conceptual model, and we plan to further test the applicability of the module using different surface environmental data.
        1491.
        2022.05 구독 인증기관·개인회원 무료
        Expansive clays (for examples, bentonites) are favored as buffer and backfill materials because of their low hydraulic conductivity, high swelling potential, and good mechanical properties, and are installed in highly compacted blocks in repositories. Compacted expansive clays have a dual-structure system: macrostructural system which is a complex of clay aggregates with the inter-aggregate pores (macropores) which can be filled by either liquids or gases; microstructural system with the intraaggregate pores between or within clay particles (micropores) which is usually considered to be saturated by liquid. Understanding the dual-strucure system of expansive clays is essential for characterizing and modeling multiphysics (stress-strain, swelling pressure, etc.) in buffers and backfills. Existing multiphysics studies of expansive clays, as in non-expansive soils, were mostly conducted with a single structure approach based on the behavior of macropores, and there have been limitations in the comprehensive interpretation and modeling of experimental results. However, with the recent development of measurement techniques, a lot of available information on the pore structure of compacted expansive clays has been reported, and with the results, a dual-structure approach considering both microstructural and macrostructural systems has been increasingly applied to improve the modeling of multiphysics of expansive clays. This study reviewed the dual-structure system of compacted expansive clays, analyzed previous studies on its evolution according to hydromechanical loading (loading-unloading and wetting-drying paths), and based on these, intended to provide technical knowledge and information needed for multiphysics research of expansive clays-based buffer and backfill for the KRS repository.
        1492.
        2022.05 구독 인증기관·개인회원 무료
        Since it takes hundreds of thousands of years for the radiotoxicity of spent nuclear fuel to decrease to natural levels, interactions between each repository barrier, climate change, and geological evolutions are inevitable. These processes should be defined as the long-term evolution FEPs and considered in the performance assessment to ensure the long-term safety of the disposal system. The literature survey on geological characteristics and history of the Korean peninsula was conducted, and the list of A-KRS-FEPs which are directly or indirectly related to long-term evolutions was identified in this study. The ice age and geological change are the capital phenomena considered in the exceedingly long-term evolution before/after climate change. The historical data on ice sheets and permafrost were analyzed to investigate the effects of the ice ages on the Korean peninsula. The sealevel changes were investigated based on the research on the coastal terrace to identify the impact on uplift and shoreline change accompanying the ice age. Also, the survey on the geological history data was conducted from the perspective of tectonic activity, metamorphism, igneous activity, and seismic activities to consider the geodynamic evolution of the Korean peninsula. As results, it was suggested that 14 FEPs were directly related to climate change, 18 FEPs were directly related to geological evolution, and 47 FEPs were indirectly relevant to long-term geodynamics. The consent-based FEPs and scenarios for the long-term evolution will be developed shortly, including most of the critical long-term evolution phenomena defined in this study and which are highly probable in domestic disposal conditions. The evaluation and verification of the APro system for long-term safety will accomplish using these FEPs and scenarios.
        1493.
        2022.05 구독 인증기관·개인회원 무료
        Gases such as hydrogen can generate from the disposal canister in high-level radioactive waste disposal systems owing to the corrosion of cooper container in anoxic conditions. The gas can be accumulated in the voids of bentonite buffer around the disposal canister if gas generation rates become larger than the gas diffusion rate of bentonite buffer with the low-permeability. Continuous gas accumulations result in the increase in gas pressure, causing sudden dilation flow of gases with the gas pressure exceeding the gas breakthrough pressure. Given that the gas dilation flow can cause radionuclide leakage out of the engineered barrier system, it is necessary to consider possible damages affected by the radionuclide leakage and to properly understand the complicated behaviors of gas flow in the bentonite buffer with low permeability. In this study, the coupled hydro-mechanical model combined with the damage model that considers two-phase fluid flow and changes in hydraulic properties affected by mechanical deformations is applied to numerical simulations of 1-D gas injection test on saturated bentonite samples (refer to DECOVALEX-2019 Task A Stage 1A). To simulate the mechanical behavior of microcracks which occur due to the dilation flow caused by increase in gas pressure, a concept of elastic damage constitutive law is considered in the coupled hydro-mechanical model. When the TOUGH-FLAC coupling-based model proposed in this study is applied, changes in hydraulic properties affected by mechanical deformations combined with the mechanical damage are appropriately considered, and changes in gas injection pressure, pore pressures at radial filters and outlet, and stress recorded during the gas injection test are accurately simulated.
        1494.
        2022.05 구독 인증기관·개인회원 무료
        High level nuclear waste (HLW) is surely disposed in repository in safe by being separated from human life zone. Deep geological disposal method is one of the most potent disposal method. Deep geological repository is exposed to high pressure and groundwater saturation due to its depth over 500 m. And it is also exposed to high temperature and radiation by spent fuels. Thus, HLW repository suffers extremely complex thermo-hydro-mechanical-radioactive condition. Long-term integrity of repository should be verified because the expected lifetime of the repository is over 10,000 years. However, the integrity of monitoring sensors are not reach the endurance lifetime of the repository with present technology. And the disposal condition, thermo-hydro-mechanical-radioactive, should shorten the estimated lifetime of the monitoring sensors. Therefore, it is necessary to improve the long-term integrity of the monitoring sensors. Although long-term tests are required to identify the prolonged durability of monitoring sensors, accelerated tests can help curtail test period. Accelerated tests is classified into accelerated stress test and accelerated degradation test and their methodology and theories are investigated. Their tests are design and proceed by following process: 1) identify failure modes, 2) select accelerated stress parameter, 3) Determine stress level, 4) Determine testing time and number of specimens, 5) Define measurement paremeter and failure criteria, 6) Suggest measurement method and measurement duration. Literature reviews were conducted to identify the influence of the disposal conditions such as thermo-hydro-mechnical-radioactive on integrity of material and monitoring sensors. The investigated data reported in this paper will be utilized to verify the improvement of integrity of monitoring sensors.
        1495.
        2022.05 구독 인증기관·개인회원 무료
        Discontinuum-based numerical methods can contain the multiple discontinuities in a model and reflect the thermal, hydraulic and mechanical characteristics of discontinuities. Therefore, discontinuum methods can be appropriate to simulate the model which require the detailed analysis of the coupled thermo-hydro-mechanical processes in fractured rock such as geothermal energy, CO2 geo-sequestration, and geological repository of the high-level radioactive waste. TOUGH-3DEC, the three-dimensional discontinuum simulators for the coupled thermo-hydro-mechanical analysis, was developed by linking the integral finite difference method TOUGH2 and the explicit distinct element method 3DEC to describe the coupled thermo-hydro-mechanical processes in both porous media and discontinuity. TOUGH2 handles thermo-hydraulic analysis by the internal simulation module, and 3DEC performs mechanical study based on the constitutive models of porous media and discontinuity with coupling the thermal and hydraulic response from TOUGH2. The thermal and hydraulic couplings are the key processes and should be carefully verified by sufficient cases, so this study performed the thermomechanical and hydro-mechanical simulations which are modelling the analytic solutions including the uniaxial consolidation, fracture static opening, and the heating of a hollow cylinder problems. Each thermo-mechanical and hydro-mechanical verification case is also validated by comparing with the results of the other continuum and discontinuum-based numerical methods. TOUGH-3DEC results follow the analytic solutions and show better accuracy than the continuum-based numerical methods in the static fracture opening problem. The developed TOUGH-3DEC simulator can be expanded to coupled thermo-hydro-mechanical-chemical analysis in fractured rock mass, and the simulator needs to be verified by more complicated coupled processes problems which require in the chemical coupling.
        1496.
        2022.05 구독 인증기관·개인회원 무료
        An objective of a safety assessment for geological disposal is to evaluate the radiological impact by radionuclides release from radioactive wastes. Computational estimation of all radionuclides transport in the disposal system, however, is not neccessary because some radionuclides has negligible effect on radiological doses. For this reason, prioritization of radionuclides list is preceded before the safety assessment. The Korea Atomic Energy Research Institue (KAERI) has assessed the long-term safety of a disposal system for spent nculear fuels. Currently, thirty eight radionuclides and twenty three elements are considered in the safety assessment activity of the KAERI. Nevertheless, a screening process for radionulides selection has not been articulated yet. In this study, we reviewed radionuclides selection process in forign countries to re-establish screening criteria for the KAERI’s radionuclides list. Screeing models of the Swedish Nuclear Fuel and Waste Management Company (SKB), the Deparment of Eenrgy (US DOE), and the Japan Nuclear Cycle Development Istitute (JNC) were compared. We found that each country developed different screening model depending on scenarios of radionuclides release. Nonetheless, there were common properties that determines the importance of radionuclides. These properties for radionuclides include halflife, radiotoxicity (or specific activity), and mobility in underground medium. Based on the review results, we proposed radionuclides selection process to prioritize the importance of radionucldies in the KAERI safety assessment.
        1497.
        2022.05 구독 인증기관·개인회원 무료
        To decrease area of the repository for high-level radioactive waste, enhancing the disposal efficiency is needed for public acceptance. Previous studies regarding the performance assessment of KRS and KRS+ repository did not consider area-based variations of the geothermal gradient and rock thermal properties in Korea. This research estimated deposition hole spacing based on performance assessment of a repository using the distribution of geothermal gradient and rock thermal properties in Korea to increase disposal efficiency. Distributions of geothermal gradient, rock thermal properties were investigated based on 2019 Korea geothermal atlas published by Korea Institute of Geoscience and Mineral Resources (KIGAM). Effect of thermal performance parameters was analyzed using coupled thermal-hydraulic numerical simulations, and effect of rock thermal conductivity and deposition hole spacing on the maximum temperature of buffer was relatively large. In addition, distribution maps of thermal performance of a repository and deposition hole spacing were plotted using thermal performance parameters-maximum temperature of buffer regression equations and GIS data given by KIGAM. In the regions showing the highest maximum temperature of buffer in Korea, required deposition hole spacings were 10.5 m, 10.0 m, 10.1 m, respectively for KJ-II, MX-80, and FEBEX bentonite cases, and thereby additional disposal area of 40%, 33.3%, and 34.7% were required compared to that of the KRS+ repository. On the other hand, high disposal efficiency can be obtained in the regions showing the low maximum temperature of bentonite buffer. The methodology provided in this research can be used as one of the references for the selection of domestic candidate repository sites. Additional mechanical performance analysis should be conducted using distributions of mechanical properties of rock mass in Korea.
        1498.
        2022.05 구독 인증기관·개인회원 무료
        The backfill close the deep geological disposal system by filling the disposal tunnel and the connecting tunnel after the installation of buffer in the disposal hole. SKB and Posiva have established and designed the safety function of the backfill for the common goal of the deep geological disposal system. The safety function of backfill material has been set hydraulic conductivity of less than 10−10 m·s−1, a swelling pressure of 0.2 MPa, a compressive modulus of 10 MPa or a buffer density of 1,950 kg·m−3 or more, and freezing resistance. For the selection of the optimum backfill material, SKB and Posiva developed the concept of the backfill and evaluated the candidate that satisfies the requirements in four steps. In the first step, the performance and function that the backfill material should have were conceptualized. For the second step, laboratory tests and in-depth analysis of the candidate material properties were conducted. At this step, the focus has been on testing with the concept of the block method, using key candidate materials. In step 3, laboratory and large-scale experiments were performed to test engineering feasibility. In addition, design specifications for backfill materials were set based on site conditions, installation methods, and short- and long-term functions of materials. In Korea, it is only now in the step of selecting the concepts of the safety function. Therefore, it is necessary to benchmark the development process based on the previous studies of SKB and Posiva. In this study, candidate materials, experimental methods, and results were analyzed. As a result, the research steps and conditions for the selection of the optimum backfill material were reviewed. Using this study, the research steps of domestic backfill was suggested to develop within a short time for the Korean deep geological disposal system.
        1499.
        2022.05 구독 인증기관·개인회원 무료
        Deep geological disposal (DGD) of spent nuclear fuels (SNF) at 500 m–1 km depth has been the mainly researched as SNF disposal method, but with the recent drilling technology development, interest in deep borehole disposal (DBD) at 5 km depth is increasing. In DBD, up to 40SNF canisters are disposed of in a borehole with a diameter of about 50 cm, and SNF is disposed of at a depth of 2–5 km underground. DBD has the advantage of minimizing the disposal area and safely isolating highlevel waste from the ecosystem. Recently, due to an increasing necessity of developing an efficient alternative disposal system compared to DGD domestically, technological development for DBD has begun. In this paper, the research status of canister operation technology and plans for DBD demonstration tests, which subjects are being studied in the project of developing a safety-enhancing high-efficiency disposal system, are introduced. The canister operation technology for DBD can be divided into connection device development and operation technology. The developing connection device, emplacing and retrieving canisters in borehole, adopted the concept of a wedge thus making replacement equipment at the surface unnecessary. The new connection device has the advantage of being well applied with emplacement facilities only by simple mechanical operation. The technology of operating a connection device in DBD can be divided into drill pipe, coiled tubing, free-drop, and wireline. The drill pipe is a proven method in the oil industry, but requiring huge surface equipment. The coiled tubing method uses a flexible tube and shares disadvantages as the drill pipe. The free-drop is a convenient method of dropping canister into a borehole, but has a weakness in irretrievability in an accident. Finally, the wireline method can be operational on a small scale using hydraulic cranes, but the number of operated canisters at once is limited. The test facility through which the connection device is to be tested consists of dummy canister, borehole, lifting part, monitoring part, and connecting device. The canister weight is determined according to the emplacement operation unit. The lifting part will be composed following wireline consisting of a crane, a wire and a winding system. The monitoring part will consist of an external monitoring system for hoists and trolleys, and an internal monitoring system for the connection device’s location, pressure, and speed. In this project, a demonstration test will be conducted in a borehole with 1km depth, 10 cm diameter provided by KAERI to verify operation in the actual drilling environment after design improvement of the connecting device. If a problem is found through the demonstration test, the problem will be improved, and an improved connection device will be tested to an extended borehole with a 2 km depth, 40 cm diameter.
        1500.
        2022.05 구독 인증기관·개인회원 무료
        APro, a modularized framework of the process-based total system performance assessment, has been developed by KAERI to simulate the radionuclide transport in geological disposal system considering multi-physics phenomena. However, the target problem including more than 10,000 boreholes and over 100,000 years of simulation time is computationally challenging to deal with numerical solvers provided by COMSOL Multiphysics constituting APro. To alleviate the computational burden, machine learning (ML) techniques have been studied to develop a surrogate model replacing the heavy computation part. In recent studies, attempts have been made to integrate the knowledge of physics and numerical methods into the ML model for partial differential equations (PDEs). Unlike conventional ML approaches solely relying on data-driven method, the integration can help to make the ML model more specialized for solving PDEs. The hybrid neural network (NN) solver method is one of the strategies to develop more efficient PDE solver by interleaving NN with numerical solvers like finite element method (FEM). The hybrid NN model on the premise of numerical solver is easier to train and more stable than the purely data-driven model. For example, one previous study has used the hybrid NN model as a corrector for an incomplete numerical solver for the advection-diffusion problem. In every time step of simulation, NN corrects the error of incomplete solution obtained by a relaxed numerical solver with coarse meshing. The simulation in the next time step starts from the corrected solution, so NN interacts with the numerical solver iteratively. If the corrector is successfully trained, the incomplete but fast solver with corrector can provide reliable results comparable to the original massive solver. This study adopts the hybrid concept to develop a surrogate model for the near-field region, which is the heavy computation part in the simulation of geological disposal system. Various incomplete models such as coarse meshing or emptying the borehole domain are studied to construct a hybrid NN solver. This study also covers how to embed the hybrid NN in COMSOL Multiphysics to train and use it during the simulation.