Graphene-derived materials are an excellent electrode for electrochemical detection of heavy metals. In this study, a MnO2/ graphene supported on Ni foam electrode was prepared via ultrasonic impregnation and electrochemical deposition. The resulting electrode was used to detect Pb(II) in the aquatic environment. The graphene and MnO2 deposited on the Ni foam not only improved active surface area, but also promoted the electron transfer. The electrochemical performance towards Pb(II) was evaluated by cyclic voltammetry (CV) and square wave anodic stripping voltammetry (SWASV). The prepared electrode exhibited lower limit of detection (LOD, 0.2 μM (S/N = 3)) and good sensitivity (59.9 μAμM−1) for Pb(II) detection. Moreover, the prepared electrodes showed good stability and reproducibility. This excellent performance can be attributed to the strong adhesion force between graphene and MnO2, which provides compact structures for the enhancement of the mechanical stability. Thus, these combined results provide some technical considerations and scientific insights for the detection of heavy metal ions using composite electrodes.
이 연구는 미술치료에 대해 이론적, 과학적 기초를 제공해주는 정신역 동이론의 다양한 이론들과 실제 치료에 사용되는 검사방법들을 검토함으 로써 미술치료의 유효성을 검토하고자 한다. 본 연구는 미술치료에 대한 이론적, 과학적 근거를 검토하기 위해 문헌분석을 통한 질적 연구방법을 사용한다. 이를 위해 먼저 미술치료를 의학적 심리치료의 한 방식으로 취급하는 것에 대한 비판적인 주장을 검토한다. 미술치료가 과연 의학적 으로 유효한 방법인지 검토하기 위해 이론적인 근거 및 과학적 근거로 나누어 분석한다. 또한 오늘날 미술치료가 정신역동이론을 투영하는 과 학적 방식을 검토하고, 정신분석과 전이현상을 활용하는 미술치료에 대 해 살펴본다. 결론적으로, 미술치료에 대한 반대론이 심리과학과 연동된 미술치료의 이면에 대한 오해로 인한 것이라는 점에서, 미술치료는 정신 역동이론의 이론적 근거 및 그 축적된 임상결과로 인해 치료의 유효성을 입증하고 있다고 할 수 있다.
Renewed interest in the reinforced carbon graphite composites has intrigued the community in the advanced materials fields. In this work, we present a simple carbon nanofibers reinforced carbon graphite composites synthetic method by incorporating mixture of coal tar pitch, synthetic graphite, pitch coke and the dispersion liquid of carbon nanofibers via liquid-phase mixing process. The impact of carbon nanofiber utilization on the microstructures and mechanical properties of carbon graphite composites are studied systematically. The covalent surface modification of carbon nanofibers effectively improves its microstructure and thereby promotes the carbon graphite composites’ dispersion behavior. We propose that a small amount of carbon nanofibers could promote the carbonization process of carbon graphite composites, facilitating the densification of carbon graphite composites and reducing the undesired open porosity. The amount of 0.7 wt % of carbon nanofiber concentration allows the enhancement of bend and compressive strength of carbon graphite composites up to 36.50 MPa and 60.46 MPa, increased by 167.9% and 146.9% compared with the pure carbon graphite composite, respectively. Our findings can be rationalized due to the improvement in the mechanical strength of carbon graphite composites could be attributed due to pull-out of carbon nanofibers from the matrix and bridging effect across the crack pores within the matrix.
Supercross-linked polymers are widely used as carbon precursor materials due to their abundant carbon sources and low cost. In this paper, a supercross-linked polymer was prepared by the solvothermal method. The supercross-linked polymer as a precursor and the PPyC-800-A was synthesized by activating this with KOH. The microstructure, structure, and electrochemical performances of porous carbon PPyC-800-A were studied at different of temperature and carbon alkali ratio. According to the results, the porous carbon PPyC-800-1:2 is mainly composed of a stack of spherical particles with a high surface area of 1427.03 m2 g− 1, an average pore diameter of 2.32 nm, and a high specific capacitance of 217.7 F g− 1 at a current density of 1.0 A g− 1 in a 6 M KOH electrolyte. It’s retention rate is 97.58% after 5000 constant current charges and discharges. With a specific capacitance decay rate of 21.91 percent, an energy density of 11.96 Wh kg− 1, and a power density of 500.0 W kg− 1, the current density rises from 1.0 A g− 1 to 10.0 A g− 1, exhibiting remarkable electrochemical properties, cycling stability, and energy production performance This study contributes experimental ideas to the field of supercrosslinked polymer-derived carbon materials and energy storage.
It is difficult to optimize the process parameters of directly preparing carbonaceous mesophase (CMs) by solvothermal method using coal tar as raw material. To solve this problem, a Decision Tree model for CMs preparation (DTC) was established based on the relationship between the process parameters and the yields of CMs. Then, the importance of variables in the preparation process for CMs was predicted, the relationship between experimental conditions and yields was revealed, and the preparation process conditions were also optimized by the DTC. The prediction results showed that the importance of the variables was raw material type, solvothermal temperature, solvothermal time, solvent amount, and additive type in order. And the optimized reaction conditions were as follows: coal tar was pretreated by decompress distillation and centrifugation, the solvent amount was 50.0 ml, the solvothermal temperature was 230 °C, and the reaction time was 5 h. These prediction results were consistent with the actual experimental results, and the error between the predicted yields and the actual yields was about − 1.1%. Furthermore, the prediction error of DTC method was within the acceptable range when the data sample sets were reduced to 100 sets. These results proved that the established DTC for chemical process optimization can effectively lessen the experimental workload and has high application value.
RCEP will have a significant impact on ASEAN, China and other contracting parties, significantly enhancing the cooperative levels between ASEAN and other essential economies in the region. It can develop the manufacturing industry in ASEAN and China with higher quality. First of all, this study used the Strengths (S), Weaknesses (W), Opportunities (O) and Threats (T) (SWOT) model to analyze the specific impacts of China’s participation in RCEP on the development of ASEAN’s manufacturing industry. Subsequently, strategic recommendations were put forward for the high-quality development of ASEAN’s manufacturing industry under the RCEP cooperation mechanism from four aspects of SO,WO, ST and WT. As the signing of RCEP provides an excellent development opportunity, the ASEAN member countries should carry out deeper cooperation with China; create new strengths for high-quality development of the manufacturing industry; erect a closer regional industrial chain and the supply chain; and promote the realization of a higher level of regional economic integration between ASEAN and China.
In this paper, we presented a hybrid composite of graphene quantum dots (GQDs)-modified three-dimensional graphene nanoribbons (3D GNRs) composite linked by Fe3O4 and CoO nanoparticles through reflux and ultrasonic treatment with GQDs, denoted as 3D GQDs-Fe3O4/CoO@GNRs (3D GFCG). In this hybrid, the 3D GNRs framework strengthened the electrical conductivity and the synergistic effects between GQDs and 3D GFCG enhanced the oxygen reduction reaction (ORR) activity of the nanocomposite. The results imply that decorating GQDs with other electro-catalysts is an effective strategy to synergistically improve their ORR activity.
A facile and efficient method was developed to prepare highly stretchable and conductive graphene conductors with wrinkled structures by the mechanical stretching and shrinking of elastomeric substrates, in which graphene inks were printed on a prestretched elastomeric substrate. Stretchable and exfoliated graphene inks were prepared by mixing graphite and Ecoflex in a shear-assisted fluid dynamics reactor. The resultant graphene conductor exhibited excellent stretchability at 150% strain and high electrical conductivity of 64 ± 1.2 S m− 1. The resistance of the conductor did not change in bent, twisted, and stretched states. The resistance did not change during 10,000 cycles of stretching/releasing, with a maximum strain of 150%. Based on the graphene conductor, a stretchable conductometric sensor with a two-electrode configuration was fabricated to measure impedance changes at different concentrations of electrolyte ions. This sensor exhibited a good and linear sensitivity curve (298.61 Ω mM− 1, R2 = 0.999) in bent and stretched states.
기후변화 시나리오는 기후변화로 인한 미래 영향을 평가하여 피해를 선제적으로 최소화하기 위한 기후변화 대응 및 적응정책 수립을 위한 과학적인 근거로 활용 되어 왔다. IPCC 6차 평가보고서(AR6)에 사용된 SSPs(Shared Socioeconomic Pathways, 공통사회경제경로) 시나리오는 기존 RCP(Representative Concentration Pathways, 대표농도경로) 시나리오에 사용된 복사강제력 개념과 함께 미래의 완화 와 적응 노력에 따른 5개의 사회경제 시나리오를 추가로 고려하였다. 가나는 국가 발전용량의 54%를 수력발전에 의존하고 있어 기후변화에 따른 강수량의 감소로 전력 부족을 경험하고 있다. 또한 강우특성의 변화로 인해 주요 작물인 카사바, 옥수수, 코코아의 생산량이 감소할 것으로 예측된다. 한편, IPCC 6차 보고서의 기 준 시나리오로 채택된 SSPs 시나리오는 5차 보고서에서 채택된 RCPs 시나리오에 비해 대기 중 CO2 농도 전망을 비관적으로 평가하고 있다. Business as usual(BAU) 시나리오(RCP8.5, SSP5-8.5)에 따르면 2050년대 CO2 농도는 RCPs 시나 리오의 경우 541 ppm, SSPs 시나리오는 565 ppm으로 SSPs 시나리오가 RCPs 시나 리오에 비해 대기중 CO2 농도 증가 속도가 빠른 것으로 전망하고 있다. 따라서 본 연구에서는 기후변화 시나리오의 통계적 상세화 방법인 Simple Quantile Mapping(SQM)을 사용하여 Coupled Model Intercomparison Project phase 6(CMIP6) 18개 General Circulation Model(GCM)을 활용하여 가나지역의 미래기후 변동과 불 확실성을 평가하였다.
Pentachlorophenol (PCP), as one of the common pesticide and preservatives, is easily accumulated in living organisms. Considering the high toxicity of PCP, the development of an effective and sensitive inspection method to determine the residual trace amounts of PCP continues to be a significant challenge. Herein, a convenient and sensitive electrochemical sensor is constructed by modifying glassy carbon electrode with cerium dioxide ( CeO2) nanoparticles anchored graphene ( CeO2-GR) to detect trace PCP. Benefiting from the two-dimensional lamellar structural advantages, the extraordinary electron-transfer properties, as well as the intensive coupling effect between CeO2 nanoparticles and graphene, the afforded CeO2- GR electrode nanomaterial possesses excellent electrocatalytic activity for the oxidation of PCP. Under the optimum synthetic conditions, the PCP oxidation peak currents of developed CeO2– GR sample exhibit a wide linear range of 5–150 μM. Moreover, the corresponding detection limit of PCP on the CeO2– GR electrode is as low as 0.5 μM. Apart from providing a promising electrochemical sensor, this work, most importantly, promotes an efficient route for the construction of highly active sensing electrode materials.
Hypercrosslinked polymers HCPs have been widely used as precursors to prepare porous carbon materials because of their highly ordered porous structure and large specific surface area. In this paper, we used a solvothermal method to prepare a hypercrosslinked polymer, and the HCPC-700-A was prepared using an activation method with the hypercrosslinked polymer as the precursor. The effects of different carbon–alkali ratios on the microstructure, composition and electrochemical properties of porous carbon HCP were studied. The results show that the surface of porous carbon HCPC-700-A presents a relatively regular geometric shape, and a large number of pore structures are mainly micro- and mesopores. The specific surface area is 2074.53 m2 g− 1, and the average pore size is between 1.29 and 1.93 nm. Porous carbon HCPC-700-1:2 has excellent electrochemical performance in 1 M H2SO4, and the specific capacitance is up to 464.4 F g− 1 at a current density of 1 A g− 1. The specific capacitance decay rate is 29.72% when the current density is increased from 1 A g− 1 to 8 A g− 1. After 5000 cycles, the capacitance retention rate is 91.16% at a current density of 2 A g− 1, showing excellent electrochemical performance, good cycle stability and perfect energy storage performance. This research provides new experimental ideas for HCPs in the electrochemical energy storage field.
Electrochemical reduction of carbon dioxide to valuable chemicals is a promising way of storing renewable energy through electric-to-chemical energy conversion, while its large-scale application is in urgent need of cheap and high-performance catalysts. Herein, we invent a convenient method to synthesize N-doped porous carbon by ammonia etching the pyrolysis carbon of petroleum pitch. We found the ammonia etching treatment not only increase the pyridinic-N content, but also enlarge the specific surface area of the petroleum pitch-based porous carbon. As a cheap and easily available catalyst for carbon dioxide electroreduction, up to 82% of Faradaic efficiency towards carbon monoxide was obtained at − 0.9 V vs the reversible hydrogen electrode in 0.1 M KHCO3. After a long time electrocatalysis of more than 20 h, the Faradaic efficiency of carbon monoxide remains 80%, indicating the porous carbon as made have an ultra-high stability as catalyst for carbon dioxide reduction. Our work provides a new technology to economically prepare efficient electrocatalysts for carbon dioxide reduction.