W-Cu alloy is attractive to thermal managing materials in microelectronic devices because of its good thermal properties. The metal injection molding (MIM) of W-Cu systems can satisfy the need for mass production of the complex shaped W-Cu parts in semiconductor devices. In this study, the application of MIM process of the mechanically alloyed (MA) W-Cu composite powders, which had higher sinterability were investigated. The MA W-Cu powders and reduction treated (RT) powders were injected by using of the multicomponent binder system. The multi-stage debinding cycles were adopted in and atmosphere. The isostatic repressing treatment was carried out in order to improve the relative density of brown parts. The brown part of RT W-Cu composite powder sintered at 110 had shown the higher sinterability compared to that of MA powder. The relative sintered density of all specimens increased to 96% by sintering at 120 for 1 hour. The relationship between green density and the sintering behavior of MA W-Cu composite powder was analyzed and discussed on the basis of the nanostructured characteristics of the MA W-Cu composite powder.
The elevated temperature compressive tests were carried out in order to investigate the deformation behavior and microstructural characteristics of Al-8%Ti, Al-12%Ti and Al-16%Ti (wt%) alloys, which were mechanically alloyed and consolidated by vacuum hot pressing, A13Ti intermetallic phases were formed with sizes of few hundred nanometers in the mechanically alloyed Al-Ti alloys. The compressive strength of mechanically alloyed AA-Ti alloys increased with decroasing the temperature and with increasing the strain rate. The strain rate sensitivities of Al-8%Ti, Al-12%Ti and Al-16%Ti alloys were measured 0.02,0.03, and 0.14, respectively, at 35.
Thick and dense deposit of higher than 97% of theoretical density was formed by induction plasma spraying. To investigate the effects of powder morphology on the density of deposit, two different kinds of Yttria-Stabilized-Zirconia powder, METCO202NS (atomized & agglomerated) and AMDRY146 (fused & crushed), were used and compared. After plasma treatment, porous METCO202NS powder was all the more densely deposited and its density was increased. In addition to the effect of powder morphology, the process parameters such as, sheath gas composition, probe position, particle size and spraying distance, and so on, were evaluated. The result of experiment with AMDRY146 powder, particle size and spraying distance affected highly on the density of the deposit. The optimum process condition for the deposition of -75 of 20%-Yttria-Stabilized-Zirconia powder was 120/201/min of Ar/ gas rate, 80 kW of plasma plate power, 8 cm of probe position and 150 Torr of spraying chamber pressure, at which its density showed 97.91% of theoretical density and its deposition rate was 20 mm/min. All the results were assessed by statistical approach what is called ANOVA.
and alloys have been Produced by mechanical milling in an attritor mill using prealloyed powders. Microstructure of binary powders consists of grains of hexagonal phase whose structure is very close to . powders contains TiB2 in addition to matrix grains of hexagonal phase. The grain sizes in the as-milled powders of both alloys are nanocrystalline. The mechanically alloyed powders were consolidated by vacuum hot pressing (VHP) at 100 for 2 hours, resulting in a material which is fully dense. Microstructure of consolidated binary alloy consists of -TiAl phase with dispersions of and phases located along the grain boundaries. Binary alloy shows a significant coarsening in grain and dispersoid sizes. On the other hand, microstructure of B containing alloy consists of -TiAl grains with fine dispersions of within the grains and shows the minimal coarsening during annealing. The vacuum hot pressed billets were subjected to various heat treatments, and the mechanical properties were measured by compression testing at room temperature. Mechanically alloyed materials show much better combinations of strength and fracture strain compared with the ingot-cast TiAl, indicating the effectiveness of mechanical alloying in improving the mechanical properties.
Sintering behavior of nanostructured(NS) W-Cu powders prepared by mechanical alloying (MA) was investigated as a function of sintering temperature. MA NS W-2owt%Cu and W-3owt%Cu composite powders with the crystal size of 20-30 nm were annealed at 90, and thermal characteristics of those powders were investigated by DSC. Sintering behavior of MA NS W-Cu composite powders was investigated during the solid-state sintering and the Cu-liquid phase sintering. The new nanosintering phenonenon of MA W-Cu powders at solid-state sintering temperature was suggested to explain the W-grain growth in the inside of MA powders. The sintering densification of MA NS W-Cu powders was enhanced at Cu melting temperature by arrangement of MA powders, i.e., the first rearrangement of MA powders was occurred, and then the rearrangement of W-grains in the sintered parts was also took place during liquid-phase sintering, i.e., the second rearrangement was happened. Due to the double rearrangement process of MA NS W-Cu powders, the high sintered density with more than 96%o was obtained and the fine and high homogeneous state of W and Cu phases was achieved by sintering at 1200 .
방사선물질의 수송 및 저장용기 등에 사용되는 에폭시수지계 중섣자 차폐재, KNS-201, KNS-301 및 KNS-601을 제조하였다. 기본물질은 개질 및 수소 첨가된 비스페놀 A형 그리고 노블락형 에폭시수지이며, 첨가제로는 수산화알루미늄 및 탄화붕소이다. 이들 중성자 차폐재들의 열적 및 역학적 성질 및 재방사선성 등을 평가하기 위해 여러 특성시험을 행하였다. 조사된 제반 특성들은 열분해온도;257~280˚C, 열전도도;0.95~1.14W/m.K, 열팽창계수 ;0.77~1.26x10-6˚C-1, 연소특성;800˚C이하, 평균연소시간;5초 이하, 평균연소길이 ;5mm 이하, 인장강도;2.5~3.2Kg/mm2,압축강도:13.2~15.2kg/mm2 굴곡강도:5.2~604Kg/mm2 등을 나타냈다. 전반적으로 개발된 중성자 차폐재들의 관련 특성들이 외국에서 사용되는 중성자 차폐재, NS-4-RF보다 우수한 것으로 나타났다. 또한 KNS-601의 내방사선성이 KNS-201과 KNS-301보다 우수한 것으로 나타났다. 또한 KNS-601의 내방사선이 KNS-201과 KNS-301보다 우수한 것으로 나타났다.
EMI 차폐재를 이용하여 전자파 장해를 극복하는 방법에는 금속판을 이용하는 방법과 플라스틱 표면에 전도층을 형성하는 방법, 전도성 충진제를 플라스틱에 혼입하는 방법이 대표적으로 사용되고 있으나 각각의 방법마다 장단점이 존재하기 때문에 많은 연구들의 목적은 전자 기기 본체의 무게를 증가시키지 않고 최대한 전자파 차폐 효율을 높이는 물질 개발에 목적을 두고 있다. 이러한 목적을 위하여 본 연구에서는 비중이 낮고 판상형인 운모 분체 펴면 위에 무전해 니켈 도금을 시행하므로써 전도성을 지니는 금속화운모를 제조하여, 이를 EMI차폐용 분체로서 사용하였다. 또한 이 EMI 차폐용 분체의 특성을 고찰 하였다. 미분체 운모 표면에 무전해 니켈막 금속화운모 미분체를 도료화하여 전자파 차폐 효과를 측정한 결과 최고 63dB를 나타내었다. 이 값은 구리 금속판을 이용한 전자파 차폐의 90dB에는 못 미치지만, 도포 횟수를 6회 이상 시행했을 경우 전자파 차폐 효과가 약 10dB 정도가 증가함을 알 수 있었고, 넓은 범위의 전자파 차폐 효과를 거둘 수 있는 특징이 있다.