검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 230

        181.
        2010.04 KCI 등재 서비스 종료(열람 제한)
        The purpose of this study is to investigate the effect of influent phosphorus concentration on the nitrogen and phosphorus removal in sequencing batch reactor(SBR) and sequencing batch biofilm reactors(SBBRs) in order to recover the enhanced biological phosphorus removal (EBPR) capacity at the sludge of the deterioration of EBPR capacity. In SBBRs, comparing to SBR, the organic removal was occurred actively at the 1st non-aeration period because of the active phosphorus release at this period. However, the variation of TOC removal according to the decrease of influent phosphorus concentration was not clearly shown both in SBR and SBBRs. In case of SBR losing EBPR capacity, the EBPR capacity was not recovered by the decrease of the influent phosphorus concentration from 7.5 mg/L to 0.9 mg/L. The nitrogen removal increased by the decrease of influent phosphorus concentration both in SBR and SBBRs.
        182.
        2010.01 KCI 등재 서비스 종료(열람 제한)
        The separation of TiO2 wastewater carried out by an electrocoagulation/flotation process, which had various operating parameters. The effect of electrode material (aluminum and four dimensionally stable electrode), applied current (0.07∼0.5 A), electrolyte concentration (0∼1 g/L), solution pH (3∼11), initial turbidity (1000∼20000 NTU) and suspended solid concentration (5000∼25000 mg/L) were evaluated. Turbidity removal efficiency of the soluble anode (aluminum), which could produce metal ions, was higher than that of the dimensionally stable electrode. Considering operation time, turbidity removal and electric power, optimum current was 0.19 A. The more NaCl dosage was high, the less electric power was required. However, optimum NaCl concentration was 0.125 g/L considered removal efficiency, operation time and cost. Initial TiO2 concentration did not affected turbidity removal on the electrocoagulation/ flotation operation. The electrocoagulation/flotation process was proved to be a very effective separation method in the removal of TiO2 from wastewater.
        183.
        2009.11 KCI 등재 서비스 종료(열람 제한)
        The purpose of this study is to investigate electro-generation of free Cl, ClO2, H2O2 and O3 and degradation of Rhodamine B in solution using Ru-Sn-Sb electrode. Electrolysis was performed in one-compartment reactor using a dimensionally stable anode(DSA) of Ru-Sn-Sb/Ti as the working electrode. The effect of applied current (0.5-3 A), electrolyte type (NaCl, KCl, HCl, Na2SO4 and H2SO4) and concentration (0.5-2.5 g/L), air flow rate (0-3 L/min) and solution pH (3-11) was evaluated. Experimental results showed that concentration of 4 oxidants was increased with increase of applied current, however optimum current for RhB degradation was 2 A. The generated oxidant concentration and RhB degradation of the of Cl type-electrolyte was higher than that of the sulfate type. The oxidant concentration was increased with increase of NaCl concentration and optimum NaCl dosage for RhB degradation was 1.75 g/L. Optimum air flow rate for the oxidants generation and RhB degradation was 2 L/min. ClO2 and H2O2 generation was decreased with the increase of pH, whereas free Cl and O3 was not affected by pH. RhB degradation was increase with the pH decrease.
        184.
        2009.11 KCI 등재 서비스 종료(열람 제한)
        The aim of this research was to apply experimental design methodology in the optimization condition of electrochemical oxidation of Rhodamine B(RhB). The reactions of electrochemical oxidation were mathematically described as a function of parameters amounts of current, NaCl dosage, pH and time being modeled by the use of the central composite design, which was used for fitting quadratic response surface model. The application of response surface methodology using central composite design(CCD) technique yielded the following regression equation, which is an empirical relationship between the removal efficiency of RhB and test variable in actual variables: RhB removal (%) = 3.977 + 23.279․Current + 49.124․NaCl - 5.539․pH - 8.863 ․time - 22.710․Current․NaCl + 5.409․Current․time + 2.390․NaCl․time + 1.061․pH․time - 0.570․time2. The model predicted also agree with the experimentally observed result(R2 = 91.9%).
        185.
        2009.06 KCI 등재 서비스 종료(열람 제한)
        This study has carried out to evaluate the effect of NaCl as electrolyte of single (electrolysis and UV process) and complex (electrolysis/UV) processes for the purpose of removal and mineralization of Rhodamine B (RhB) dye in water. It also evaluated the synergetic effect on the combination of electrolysis and UV process. The experimental results showed that RhB removal of UV process was decreased with increase of NaCl, while RhB removal of electrolysis and electrolysis/UV process was increased with increase of NaCl. The decolorization rate of the RhB solution in every process was more rapid than the mineralization rate identified by COD removal. The latter took longer time for further oxidation. Absorption spectra of an aqueous solution containing RhB showed a continued diminution of the RhB concentration in the bulk solution: concomitantly, no new absorption peaks appeared. This confirmed the decolorization of RhB, i.e., the breakup of the chromophores. It was observed that RhB removal in electrolysis/UV process is similar to the sum of the UV and electrolysis. However, it was found that the COD of RhB could be degraded more efficiently by the electrolysis/UV process than the sum of the two individual process. A synergetic effect was demonstrated in electrolysis/UV process.
        186.
        2009.01 KCI 등재 서비스 종료(열람 제한)
        Fabrication and oxidants production of 3 or 4 components metal oxide electrode, which is known to be so effective to destruct non-biodegradable organics in wastewater, were studied. Five electrode materials (Ru as main component and Pt, Sn, Sb and Gd as minor components) were used for the 3 or 4 components electrode. The metal oxide electrode was prepared by coating the electrode material on the surface of the titanium mesh and then thermal oxidation at 500℃ for 1 h. The removed RhB per 2 min and unit W of 3 components electrode was in the order: Ru:Sn:Sb=9:1:1 > Ru:Pt:Gd=5:5:1 > Ru:Sn=9:1 > Ru:Sn:Gd=9:1:1 > Ru:Sb:Gd=9:1:1. Although RhB decolorization of Ru:Sn:Sb:Gd electrode was the highest among the 4 components electrode, the RhB decolorization and oxidants formation of the Ru:Sn:Sb=9:1:1 electrode was higher than that of the 3 and 4 components electrode. Electrogenerated oxidants (free Cl and ClO2) of chlorine type in 3 and 4 components electrode were higher than other oxidants such as H2O2 and O3. It was assumed that electrode with high RhB decolorization showed high oxidant generation and COD removal efficiency. OH radical which is electrogenerated by the direct electrolysis was not generated the entire 3 and 4 components electrode, therefore main mechanism of RhB degradation by metal oxide electrode based Ru was considered indirect electrolysis using electrogenerated oxidants.
        187.
        2009.01 KCI 등재 서비스 종료(열람 제한)
        Fabrication and oxidants formation of 1 and 2 component metal oxide electrode, which is known to be so effective to destruct non-biodegradable organics in wastewater, were studied. Five electrode materials (Ru, Pt, Sn, Sb and Gd) were used for the 1 and 2 component electrode. The metal oxide electrode was prepared by coating the electrode material on the surface of the titanium mesh and then thermal oxidation at 500℃ for 1 h. The removed RhB per 2 min and unit W for one component electrode decreased in the following sequences: Ru/Ti > Sb/Ti > Pt/Ti > Gd/Ti > Sn/Ti. The concentration of oxidants generated in 1 and 2 component electrodes was in the order of: ClO2 > free Cl > H2O2 > O3. OH radical was not generated from in entire one and two component electrodes. RhB degradation rate and generated oxidants of the Ru-Sn=9:1 electrode was higher than that of the two component electrode. The exact relationship between the removal of RhB and the generated oxidants concentration was not obvious. However, it was assumed that electrode with high RhB decolorization had high oxidant concentration.
        188.
        2008.09 KCI 등재 서비스 종료(열람 제한)
        The feasibility study of the application of the photoelectrocatalytic and electrolytic/UV decolorization of Rhodamine B (RhB) was investigated in the photoelectrocatalytic and electrolytic/UV process with TiO₂ photoelectrode and DSA (dimensionally stable anode) electrode. Three types of TiO₂ photoelectrode were used. Thermal oxidation electrode (Th-TiO₂) was made by oxidation of titanium metal sheet; sol-gel electrode (SG-TiO₂) and powder electrode (P-TiO₂) were made by coating and then heating a layer of titania sol-gel and slurry TiO₂ on titanium sheet. DSA electrodes were Ti and Ru/Ti electrode. The relative performance for RhB decolorization of each of the photoelectrodes and DSA electrodes is: Ru/Ti > Ti > SG-TiO₂ > Th-TiO₂. It was observed that photoelectrocatalytic decolorization of RhB is similar to the sum of the photocatalytic and electrolytic decolorization. Therefore the synergetic effect was not showed in pthotoelectrocatalytic reaction. Na₂SO₄ and NaCl showed different decolirization effect between pthotoelectrocatalytic and electrolytic/UV reaction. In the presence of the NaCl, RhB decolorization of Ru/Ti DSA electrode was higher than that of the other photoelectrode and Ti electrode. Optimum current, NaCl dosage and UV lamp power of the electrolytic/UV process (using Ru/Ti electrode) were 0.75 A, 0.5 g/L and 16 W, respectively.
        189.
        2008.06 KCI 등재 서비스 종료(열람 제한)
        This study was carried out to evaluate the effect of water quality of cooling tower on Legionella pneumophila disinfection using Ru/Ti electrode. The influences of parameters such as pH, turbidity, CaCO₃ and TOC were investigated using laboratory scale batch reactor. Oxidants such as free Cl, ClO₂, H₂O₂ and O₃ were measured. The results showed that all of the water quality parameters of cooling tower had deteriorated disinfection of Legionella pneumophila. When the turbidity, CaCO₃ and TOC was increased, oxidants which was generated during electrolysis was decreased. pH, free Cl, ClO₂ and H₂O₂ concentration were decreased with the increase of pH, whereas O₃ concentration was increased with the increase of pH. The order of effect of water quality on the disinfection performance for Legionella pneumophila was turbidity > CaCO₃ > TOC > pH. To obtain the safety standard (1000 CFU/L), the simultaneous increase current and NaCl dosage was needed.
        190.
        2008.05 KCI 등재 서비스 종료(열람 제한)
        For the RhB removal from the wastewater, electrochemical method was adapted to this study. Three dimensionally stable anode (Pt, Ir and Ru) and graphite and Ru cathode were used. In order to identify decolorization, the effects of electrode, current density, electrolyte and air flow rate were investigated. The effects of electrode material, current, electrolyte concentration and air flow rate were investigated on the decolorization of RhB. Electro-Fenton's reaction was evaluated by added Fe2+ and H2O2 generated by the graphite cathode. Performance for RhB decolorization of the four electrode systems lay in: Ru-graphite > Ru-Ru > Ir-graphite > Pt-graphite. A complete color removal was obtained for RhB (30 mg/L) at the end of 30 min of electrolysis under optimum operations of 2 g/L NaCl concentration and 2 A current. Fe2+ addition increased initial reaction and decreased final RhB concentration. However the effect was not high.
        191.
        2008.01 KCI 등재 서비스 종료(열람 제한)
        The electro-chemical decolorization of Rhodamine B (RhB) in water has been carried out by electro Fenton-like process. The effect of distance, material and shape of electrode, NaCl concentration, current, electric power, H2O2 and pH have been studied. The results obtained that decrease of RhB concentration of Fe(+)-Fe(-) electrode system was higher than that of other electrode system. The decrease of RhB concentration was not affected electrode distance and shape. Decolorization of electro Fenton-like reaction, which was added H2O2 onto the electrolysis using electrode was higher than electrolysis. Addition of NaCl decreased the electric consumption. The lower pH is, the faster initial reaction rate and reaction termination time observed.
        193.
        2007.10 KCI 등재 서비스 종료(열람 제한)
        Small gas bubbles are used in many environmental and industrial processes for solid-liquid separations or to facilitate heat and mass transfer between phases. This study examines some of the factors that affect the bubble volume and size processed in the EF (electroflotation) process. The effect of electrode material, NaCl dosage, current and electrode distance were studied. The results showed that the generated bubble volume with electrode material lay in: Pt/Ti ≒ Ru/Ti ≒ Ir/Ti > Ti electrode. The more NaCl dosage was high, the smaller bubble was generated due to the low electric power. Bubble generation was increased with increase of current. With the increase of NaCl dosage, bubble generation was increased at same electric power (16.2 W). Generated bubble volume was not affected by electrode distance. However, no clear trends in bubble size as a function of these parameters were evident.
        194.
        2007.09 KCI 등재 서비스 종료(열람 제한)
        The performance of EF (electroflotation) on the thickening of activated sludge were investigated using laboratory scale batch flotation reactor. In this paper, the effects of parameters such as electrode material, NaCl dosage, initial sludge concentration and electrode distance were examined. The results showed that the performance for sludge thickening of the five electrodes lay in: Pt/Ti > Ru/Ti > Ir/Ti > Ti mesh > Ti plate. The more NaCl dosage was high, the more sludge was thickened and the shorter thickening time was obtained. However, considering the final thickening time and sludge concentration, optimum NaCl dosage was 0.5 g/L. Thickening time and sludge concentration was not affected by electrode distance. In DAF (dissolved air flotation) system, optimum recycle ratio was 40% and thickening performance was lower than that of the EF.
        195.
        2007.07 KCI 등재 서비스 종료(열람 제한)
        Laboratory scale experiments were conducted to investigate the removal characteristics of nitrogen and phosphorus in two sequencing batch biofilm reactors (SBBRs). SBBR1 had a short first non-aeration period and SBBR2 had a long first non-aeration period. The removal characteristics of nitrogen and phosphorus in each SBBR were precisely observed according to the variation of influent TOC concentration, and the operation control parameters (pH, DO concentration, ORP) in each reactor were measured. In biological nitrogen removal, there was little difference between SBBR1 and SBBR2 and the nitrogen removal efficiencies were very low. The nitrogen and phosphorus removal characteristics in high influent TOC concentration were different from those in low TOC. Nitrogen removals by simultaneous nitrification/denitrification (SND) were occurred in both SBBR1 and SBBR2. The P removal in SBBR1 was superior to that in SBBR2. The second P release was observed in SBBR1 which had long second non-aeration period.
        196.
        2007.04 KCI 등재 서비스 종료(열람 제한)
        This study was carried out to investigate the effect of electrochemical (EC) disinfection of artificial wastewater contaminated by Escherichia coli culture. Circulated batch type electrochemical disinfection system using three plates electrodes was used. Also, the several factors (pH, ORP, DO, temperature, current, conductivity) were measured in order to investigate the fundamental design factor in the EC disinfection system. It was demonstrated that the EC process was highly effective for wastewater disinfection. At the constant voltage, the disinfection efficiency was increased according to time. The disinfection efficiency and current increased as the increase of voltage. The variation of conductivity was a little related to the variation of CFU (colony forming units). The differences in disinfection efficiency according to the ice pack and the variation of electrodes were not occurred. The EC disinfection efficiency and current increased according to the increase of circulating flow rate.
        197.
        2007.03 KCI 등재 서비스 종료(열람 제한)
        The photocatalytic decolorization of Rhodamine B (RhB) was studied using packed-bed reactor and immobilized TiO2/UV System. The 20 W UV-A, UV-B and UV-C lamps were employed as the light source. The effect of shape and surface polishing extent of reflector, distance between the reactor and reflector, reactor material were investigated. The results showed that the order of the initial reaction constant with reflector shape was round > polygon > W > rhombus. The optimum distance between the reactor and reflector was 2 cm. The initial reaction constant of quartz reactor was 1.46 times higher than that of the PVDF reactor.
        198.
        2007.01 KCI 등재 서비스 종료(열람 제한)
        This study was carried out to investigate the variation of organic, nitrogen and phosphorus in (AO)2 SBBR process according to the variation of operating cycle at the high TOC concentration. The operation time in anoxic (anaerobic) time to oxic time was 1:1. Three lab-scale SBBRs were fed with synthetic wastewater based on glucose as carbon source. The variation of total TOC removal was similar each other irrespective of operation time, however, the TOC concentrations in SBBRs showed a little difference according to the operating condition. In SBBR, complete nitrification was not occurred at all reactors, however, R3 showed a higher nitrification than R2. And in SBBR, the variation of operating time more affected at phosphorus removal than nitrogen removal. R2 which had the shortest time at the 1st aeration time showed the lowest phosphorus release and uptake efficacy.
        199.
        2006.12 KCI 등재 서비스 종료(열람 제한)
        This study was carried out to evaluate effect of sludge characteristics (pH, SVI, anaerobic storage, wet density and growth phase) on the sedimentation of bulking sludge of paper manufacturing plant. The results showed that mix bulking sludge with sewage sludge (10-60%) caused the decrease of SVI, the settled sludge concentration was increased. Increase of anaerobic storage time (0 to 8 day) was increased SVI, sedimentation performance was deteriorated. The sedimentation was improved by addition of loess (0.2-5.0 g/L), because wet density of sludge was increased and SVI was decreased. At an exponential phase, the ratio of sedimented/growthed sludge concentration was decreased, the ratio was increased after stationary phase.