검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3,628

        201.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present study examines the impact of COVID-19 anxiety on employees’ psychological resources and behaviors, drawing on the conservation of resources theory. We also investigate whether flexibility in work contexts has a meaningful effect on employees’ responses to the pandemic. A total of 284 working adults participated in an online survey consisting of self-reporting questionnaires that assessed levels of COVID-19 anxiety, vigor, innovative work behavior, and flexible working arrangements. The results showed that the level of vigor mediated the positive relationship between COVID-19 anxiety and innovative work behavior, and the perceived level of flexible working arrangements moderated this mediation effect positively. The findings highlight the importance of considering employees’ psychological resources and work arrangements in managing the negative impact of COVID-19-related anxiety. This study provides theoretical and practical implications for organizations to better understand the psychological processes that employees undergo during a crisis. Further research on diverse work settings and cultural backgrounds is needed to expand on the present findings.
        4,000원
        207.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a bipolar visible light responsive photocatalytic fuel cell (PFC) was constructed by loading a Z-scheme g-C3N4/ carbon black/BiOBr and a Ti3C2/ MoS2 Schottky heterojunction on the carbon brush to prepare the photoanode and photocathode, respectively. It greatly improved the electron transfer and achieved efficient degradation of organic pollutants such as antibiotics and dyes simultaneously in two chambers of the PFC system. The Z-scheme g-C3N4/carbon black/BiOBr formed by adding highly conductive carbon black to g-C3N4/BiOBr not only effectively separates the photogenerated carriers, but also simultaneously retains the high reduction of the conduction band of g-C3N4 and the high oxidation of the valence band of BiOBr, improving the photocatalytic performance. The exceptional performance of Ti3C2/ MoS2 Schottky heterojunction originated from the superior electrical conductivity of Ti3C2 MXene, which facilitated the separation of photogenerated electron–hole pairs. Meanwhile, the synergistic effect of the two photoelectrodes further improved the photocatalytic performance of the PFC system, with degradation rates of 90.9% and 99.9% for 50 mg L− 1 tetracycline hydrochloride (TCH) and 50 mg L− 1 rhodamine-B (RhB), respectively, within 180 min. In addition, it was found that the PFC also exhibited excellent pollutant degradation rates under dark conditions (79.7%, TCH and 97.9%, RhB). This novel pollutant degradation system is expected to provide a new idea for efficient degradation of multiple pollutant simultaneously even in the dark.
        4,900원
        208.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Porous carbons are considered promising for CO2 capture due to their high-pressure capture performance, high chemical/ thermal stability, and low humidity sensitivity. But, their low-pressure capture performance, selectivity toward CO2 over N2, and adsorption kinetics need further improvement for practical applications. Herein, we report a novel dual-templating strategy based on molten salts (LiBr/KBr) and hydrogen-bonded triazine molecules (melamine–cyanuric acid complex, MCA) to prepare high-performance porous carbon adsorbents for low-pressure CO2. The comprehensive investigations of pore structure, microstructure, and chemical structure, as well as their correlation with CO2 capture performance, reveal that the dual template plays the role of porogen for multi-hierarchical porous structure based on supermicro-/micro-/meso-/ macro-pores and reactant for high N/O insertion into the carbon framework. Furthermore, they exert a synergistic but independent effect on the carbonization procedure of glucose, avoiding the counter-balance between porous structure and hetero-atom insertion. This enables the preferred formation of pyrrolic N/carboxylic acid functional groups and supermicropores of ~ 0.8 nm, while retaining the micro-/meso-/macro-pores (> 1 nm) more than 60% of the total pore volume. As a result, the dual-templated porous carbon adsorbent (MG-Br-600) simultaneously achieves a high CO2 capture capacity of 3.95 mmol g− 1 at 850 Torr and 0 °C, a CO2/ N2 (15:85) selectivity factor of 31 at 0 °C, and a high intra-particle diffusivity of 0.23 mmol g− 1 min− 0.5 without performance degradation over repeated use. With the molecular scale structure tunability and the large-scale production capability, the dual-templating strategy will offer versatile tools for designing high-performance carbon-based adsorbents for CO2 capture.
        4,300원
        209.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Graphene-derived materials are an excellent electrode for electrochemical detection of heavy metals. In this study, a MnO2/ graphene supported on Ni foam electrode was prepared via ultrasonic impregnation and electrochemical deposition. The resulting electrode was used to detect Pb(II) in the aquatic environment. The graphene and MnO2 deposited on the Ni foam not only improved active surface area, but also promoted the electron transfer. The electrochemical performance towards Pb(II) was evaluated by cyclic voltammetry (CV) and square wave anodic stripping voltammetry (SWASV). The prepared electrode exhibited lower limit of detection (LOD, 0.2 μM (S/N = 3)) and good sensitivity (59.9 μAμM−1) for Pb(II) detection. Moreover, the prepared electrodes showed good stability and reproducibility. This excellent performance can be attributed to the strong adhesion force between graphene and MnO2, which provides compact structures for the enhancement of the mechanical stability. Thus, these combined results provide some technical considerations and scientific insights for the detection of heavy metal ions using composite electrodes.
        4,000원
        210.
        2023.05 구독 인증기관·개인회원 무료
        The Korea Atomic Energy Research Institute (KAERI) employs a methodology for evaluating the concentration of radionuclides, dividing them into volatile and non-volatile nuclides based on their characteristics, to ensure the permanent disposal of internally generated radioactive waste. Gamma spectroscopy enables the detection and radiation concentration determination of individual nuclides in samples containing multiple gamma-emitting nuclides. Due to the stochastic nature of radioactive decay, the generated radiation signal can interact with the detector faster than the detected signal processing time, causing dead time in the gamma spectroscopy process. Radioactive waste samples typically exhibit higher radiation levels than environmental samples, leading to long dead times during the measurement process, consequently reducing the accuracy of the analysis. Therefore, dead time must be considered when analyzing radioactive waste samples. During the measurement process, dead time may vary between a few seconds to several tens of thousands of seconds. More long dead time may also result in a temporal loss in the analysis stage, requiring more time than the actual measurement time. Long dead time samples undergo re-measurement after dilution to facilitate the analysis. As the prepared solution is also utilized in the nuclide separation processes, minimizing sample loss during dilution is crucial. Hence, predicting the possibility of dead time exceeding the target sample in advance and determining the corresponding dilution factor can prevent delays in the analysis process and the loss of samples due to dilution. In this study, to improve the issues related to gamma analysis, by using data generated during the analysis process, investigated methods to predict long dead time samples in advance and determining criteria for dilution factors. As a result of comparing the dead time data of 5% or long with the dose of the solution sample, it was concluded that analysis should be performed after dilution when it is about 0.4 μSv/h or high. However, some samples required dilution even at doses below 0.4 μSv/h. Also, re-measurement after dilution, the sample with a dead time of less than 32% was measured with less than 5% when diluted 10 times, and more than 32% required more than 10 times dilution. We suppose that with additional data collection for analyzing these samples in the future, if we can establish clearer criteria, we can predict long dead time samples in advance and solve the problem of analysis delay and sample loss.
        211.
        2023.05 구독 인증기관·개인회원 무료
        Zirconium(Zr) alloys are commonly used in the nuclear industry for applications such as fuel cladding and pressure tubes. To minimize the levels and volumes of radioactive waste, molten salts have been employed for decontaminating Zr alloys. Recently, a two-step Zr metal recovery process, combining electrolysis and thermal decomposition, has been proposed. In the electrolysis process, potentiostatic electrorefining is utilized to control the chemical form of electrodeposits(ZrCl). Although Zr metals are expected to dissolve into molten salts, reductive alloy elements can also be co-dissolved and deposited on the cathode. Therefore, a better understanding of the anodic side’s response during potentiostatic electrorefining is necessary to ensure the purity of recovered Zr and long-term process operation. As the first step, potentiodynamic polarization curves were obtained using Zr, Nb, and Zr-Nb alloy to investigate the anodic dissolution behavior in the molten salts. Nb, which has a redox potential close to Zr, and Zr exhibit active or passivation dissolution mechanisms depending on the potential range. It was confirmed that Zr-Nb alloy also has a passivation region between -0.223 to -0.092 V influenced by the major elements Zr and Nb. Secondly, active dissolution of Zr-Nb was performed in the range of -0.9 to -0.6 V. The dissolution mechanism can be explained by percolation theory, which is consistent with the observed microstructure of the alloy. Thirdly, passivation dissolution of Zr, Nb, and Zr-Nb alloy was investigated to identify the pure passivation products and additional products in the Zr-Nb alloy case. K2ZrCl6 and K3NbCl6 were identified as the pure passivation products of the major elements. In the Zr-Nb alloy case, additional products, such as Nb and NbZr, produced by the redox reaction of nanoparticles in the high viscous salt layer near the anode, were also confirmed. The anodic dissolution mechanism of Zr-Nb alloy can be summarized as follows. During active dissolution, only Zr metal dissolves into molten salts by percolation. Above the solubility near the anode, passivation products begin to form. The anode potential increases due to the disturbance of passivation products on ion flow, leading to co-dissolution of Nb. When the concentration of Nb ion exceeds the solubility, a passivation product of Nb also forms. In this scenario, a high viscous salt layer is formed, which traps nanoparticles of Zr metal, resulting in redox behavior between Zr metal and Nb ion. Some nanoparticles of Zr and Nb metal are also present in the form of NbZr.
        212.
        2023.05 구독 인증기관·개인회원 무료
        A low- and intermediate-level radioactive waste repository contains different types of radionuclides and organic complexing agents. Their chemical interaction in the repository can result in the formation of radionuclide-ligand complexes, leading to their high transport behaviors in the engineered and natural rock barriers. Furthermore, the release of radionuclides from the repository can pose a significant risk to both human health and the environment. This study explores the impact of different experimental conditions on the transport behaviors of 99Tc, 137Cs, and 238U through three types of barrier samples: concrete, sedimentary rock, and granite. To assess the transport behavior of the samples, the geochemical characteristics were determined using X-ray diffraction (XRD), X-ray fluorescence (XRF), Fouriertransform infrared spectroscopy (FTIR), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), and Brunauer-Emmett-Teller (BET) analysis. The adsorption distribution coefficient (Kd) was used as an indicator of transport behavior, and it was determined in batch systems under different conditions such as solution pH (ranging from 7 to 13), temperature (ranging from 10 to 40°C), and with the presence of organic complexing agents such as ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), and isosaccharinic acid (ISA). A support vector machine (SVM) was used to develop a prediction model for the Kd values. It was found that, regardless of the experimental parameters, 99Tc may migrate easily due to its anionic property. Conversely, 137Cs showed low transport behaviors under all tested conditions. The transport behaviors of 238U were impacted by the order of EDTA > NTA> ISA, particularly with the concrete sample. The SVM models can also be used to predict the Kd values of the radionuclides in the event of an accidental release from the repository.
        213.
        2023.05 구독 인증기관·개인회원 무료
        The bioreduction process from soluble U(VI) to insoluble U(IV) has been extensively studied in the field of radionuclides migration. Since acetic acid (AcOH) is widely used as an electron donor for bioreduction of U(VI), it is necessary to understand the effect of U(VI)-AcOH complexes that exist in different species depending on pH on this process. Changes in samples before and after bioreduction can be compared using time-resolved laser luminescence spectroscopy (TRLLS), which measures the characteristic luminescence spectra of different U(VI) species. Although luminescence properties of U(VI)-AcOH species were reported, experiments were conducted under conditions below pH 4.5. In this study, spectrophotometry and TRLLS for U(VI)-AcOH species (10−100 μM U(VI) and 20 mM AcOH) were performed in pH ranges extending to neutral and alkaline pH regions similar to groundwater conditions as well as acidic pH region. Two different complexes (UO2(AcO)+, UO2(AcO)2 with U(VI) and acetate ratios of 1:1, 1:2) were observed in the acidic pH region. The 1:1 complex, which appears as the pH increases, has no luminescence properties, but its presence can be confirmed because it serves to reduce the luminescence intensity of UO2 2+. In contrast, the 1:2 complex exhibits distinct luminescence properties that distinguish it from UO2 2+. The 1:3 complex (UO2(AcO)3 -) expected to appear with increasing pH was not observed. Two different complexes ((UO2)3(OH)5 +, (UO2)3(OH)7 - with U(VI) and OH ratios of 3:5, 3:7) were observed as the major species in the neutral pH region, but their luminescence lifetimes are remarkably short compared those in the absence of AcOH. Solid U(VI) particles were observed in the alkaline pH region, and they also had completely different luminescence properties from the aforementioned U(VI)-AcOH and U(VI)-hydrolysis species. Based on these results, the effect of pH in the presence of AcOH on the bioreduction process from U(VI) to U(IV) will be discussed.
        214.
        2023.05 구독 인증기관·개인회원 무료
        The organic complexing agents such as ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), and isosaccharinic acid (ISA) can enhance the radionuclides’ solubility and have the potential to induce the acceleration of radionuclides’ mobility to a far-field from the radioactive waste repository. Hence, it is essential to evaluate the effect of organic complexing agents on radionuclide solubility through experimental analysis under similar conditions to those at the radioactive waste disposal site. In this study, five radionuclides (cesium, cobalt, strontium, iodine, and uranium) and three organic complexing agents (EDTA, NTA, and ISA) were selected as model substances. To simulate environmental conditions, the groundwater was collected near the repository and applied for solubility experiments. The solubility experiments were carried out under various ranges of pHs (7, 9, 11, and 13), temperatures (10°C, 20°C, and 40°C), and concentrations of organic complexing agents (0, 10-5, 10-4, 10-3, and 10-2 M). Experimental results showed that the presence of organic complexing agents significantly increased the solubility of the radionuclides. Cobalt and strontium had high solubility enhancement factors, even at low concentrations of organic complexing agents. We also developed a support vector machine (SVM) model using some of the experimental data and validated it using the rest of the solubility data. The root mean square error (RMSE) in the training and validation sets was 0.012 and 0.016, respectively. The SVM model allowed us to estimate the solubility value under untested conditions (e.g., pH 12, temperature 30°C, ISA 5×10-4 M). Therefore, our experimental solubility data and the SVM model can be used to predict radionuclide solubility and solubility enhancement by organic complexing agents under various conditions.
        215.
        2023.05 구독 인증기관·개인회원 무료
        Bacterial metabolisms influence the behavior of uranium (U) in deep geological repository (DGR) system because bacteria are ubiquitous in the natural environment. Nevertheless, most studies for the U(VI) bioreduction have focused on a few model bacterium, such as Shewanella putrefaciens, Desulfovibrio desulfuricans, and Geobacter sulfurreducens. In this study, the potential of aqueous U(VI) ((U(VI)aq) reduction by indigenous bacteria was examined under anaerobic conditions with addition of 20 mM sodium acetate for 24 weeks. Three different indigenous bacterial communities obtained from granitic groundwater at depths of 44–60 m (S1), 92–116 m (S2), and 234–244 m (S3) were applied for U(VI)aq reduction experiments. The S2 groundwater contained the highest U concentration of 885.4 μg/L among three groundwater samples, where U mainly existed in the form of Ca2UO2(CO3)3(aq). The S2 groundwater amended 20 mM of sodium acetate was used for the U(VI)aq bioreduction experiment. Variations in the U(VI)aq concentration and redox potential were monitored for 24 weeks to compare U(VI)aq removal efficiency in response to indigenous bacteria. The U(VI)aq removal efficiencies varied among three indigenous bacteria: 57.8% (S3), 43.1% (S2), and 37.7% (S1). The presence of the thermodynamically stable uranyl carbonate complex resulted in the incomplete U(VI)aq removal. Significant shifts in indigenous bacterial communities were observed through highthroughput 16S rRNA gene sequencing analysis. Two SRB species, Thermodesulfovibrio yellowstonii and Desulfatirhabdium butyrativorans, were dominant in the S3 sample after the anaerobic reaction, which enhanced the bioreduction of U(VI)aq. The precipitates produced by bacterial activity were determined to be U(IV)-silicate nanoparticles by a transmission electron microscope (TEM)-energy dispersive spectroscope (EDS) analysis. These results demonstrated that considerable U immobilization is possible by stimulating the activity of indigenous bacteria in the DGR environment.
        216.
        2023.05 구독 인증기관·개인회원 무료
        In the pressurized water nuclear reactors (PWRs), the upper and bottom head penetration nozzles, the geometric asymmetry of the welded part increases from the center to the outer part, increasing the possibility of defects. For this reason, it is important to perform early detection and management through analysis of defects occurring in the welded parts of upper and bottom penetration nozzles of reactor vessel. However, it is very difficult to operate boat sampling of the welding area because the spacing of the penetration nozzle of the bottom head of the reactor is very narrow. In addition, it is more difficult to collect welded specimens of bottom penetration nozzles by electrical discharge machining in a boric acid water environment of nuclear reactor. In this work, to overcoming these technical difficulties, we developed a boat sampling robot system, which is composed of the specimen collection electrode head, borate-mediated discharge electrode and control system. Also, we performed basic performance tests and summarize the results.
        217.
        2023.05 구독 인증기관·개인회원 무료
        Our research team has developed a gamma ray detector which can be distributed over large area through air transport. Multiple detectors (9 devices per 1 set) are distributed to measure environmental radiation, and information such as the activity and location of the radiation source can be inferred using the measured data. Generally, radiation is usually measured by pointing the detector towards the radioactive sources for efficient measurement. However, the detector developed in this study is placed on the ground by dropping from the drone. Thus, it does not always face toward the radiation source. Also, since it is a remote measurement system, the user cannot know the angle information between the source and detector. Without the angle information, it is impossible to correct the measured value. The most problematic feature is when the backside of the detector (opposite of the scintillator) faces the radiation source. It was confirmed that the measurement value decreased by approximately 50% when the backside of the detector was facing towards the radiation source. To calibrate the measured value, we need the information that can indicate which part of the detector (front, side, back) faces the source. Therefore, in this study, we installed a small gamma sensor on the backside of the detector to find the direction of the detector. Since this sensor has different measurement specifications from the main sensor in terms of the area, type, efficiency and measurement method, the measured values between the two sensors are different. Therefore, we only extract approximate direction using the variation in the measured value ratio of the two sensors. In this study, to verify the applicability of the detector structure and measurement method, the ratio of measured values that change according to the direction of the source was investigated through MCNP simulation. The radioactive source was Cs-137, and the simulation was performed while moving in a semicircular shape with 15 degree steps from 0 degree to 180 degrees at a distance of 20 cm from the center point of the main sensor. Since the MCNP result indicates the probability of generating a pulse for one photon, this value was calculated based on 88.6 μCi to obtain an actual count. Through the ratio of the count values of the two sensors, it was determined whether the radioactive source was located in the front, side, or back of the probe.
        218.
        2023.05 구독 인증기관·개인회원 무료
        Decommissioning plan of nuclear facilities require the radiological characterizations and the establishment of a decommissioning process that can ensure the safety and efficiency of the decommissioning workers. By utilizing the rapidly developed ICT technology, we have developed a technology that can acquire, analyze, and deliver information from the decommissioning work area to ensure the safety of decommissioning workers, optimize the decommissioning process, and actively respond to various decommissioning situations. The established a surveillance system that monitors nuclide inventory and radiation dose distribution at dismantling work area in real time and wireless transmits data for evaluation. Developed an evaluation program based on an evaluation model for optimizing the dismantling process by linking real-time measurement information. We developed a technology that can detect the location of dismantling workers in real time using stereovision cameras and artificial intelligence technology. The developed technology can be used for safety evaluation of dismantling workers and process optimization evaluation by linking the radionuclides inventory and dose distribution in dismantling work space of decommissioning nuclear power plant in the future.
        219.
        2023.05 구독 인증기관·개인회원 무료
        According to IAEA PRIS, there is no record of dismantling commercial heavy water reactors among 57 heavy water reactors around the world. In Canada, which has the largest number of heavy water reactors, three of the 22 commercial heavy water reactors with more than 500 MW are permanently suspended, Gentilly unit 2 (2012), Pickering unit 2 (2007), and Pickering unit 3 (2008), all of which chose a delayed decommissioning strategy. On the other hand, Wolsong unit 1, which will be the world’s first heavy water reactor to be dismantled commercially, will be immediately carried out as a decommissioning strategy. KHNP has established various cooperation systems with advanced companies and international organizations related to overseas NPP decommission and is actively exchanging technologies. Among them, the most important focus is on research cooperation related to COG (CANDU owners Group). The first case is a joint study on Conceptual Calandria Segmentation. Four areas of process, waste management, ALARA, and cost for decommissioning reactors to be submitted to Canadian regulators for approval of Pickering and Gentilly-2’s preliminary decommissioning plan have been evaluated, and research on Wolsong unit 1 is currently underway. The second case is Decommissioning and long-term waste management R&D. Although the technical maturity is low, it studies the common interests of member companies in the decommissioning of heavy water reactor power generation companies and long-term waste management. Robotics for dismantling high-radiation structures, C- 14, H-3 measurement and removal methods, and concrete decontamination technology, which are characterized by heavy water, are being actively studied. KHNP is strengthening international cooperation with COG to prepare for the successful decommissioning of Wolsong unit 1. Based on previous studies by Pickering and Gentilly-2, an evaluation of the decommissioning of Wolsong unit 1 reactor is being conducted. In addition, it is preparing for decommissioning through experience analysis of the pressure tube replacement project.
        220.
        2023.05 구독 인증기관·개인회원 무료
        KHNP is carrying out international technical cooperation and joint research projects to decommission Wolsong unit 1 reactor. Construction data of the reactor structures, experience data on the pressure tube replacement projects, and the operation history were reviewed, and the amount of dismantled waste was calculated and waste was classified through activation analysis. By reviewing COG (CANDU owners Group) technical cooperation and experience in refurbishment projects, KHNP’s unique Wolsong unit 1 reactor decommissioning process was established, and basic design of a number of decommissioning equipment was carried out. Based on this, a study is being conducted to estimate the worker dose of dismantling workers. In order to evaluate the dose of external exposure of dismantling workers, detailed preparation and dismantling processes and radiation field evaluation of activated structures are required. The preparation process can be divided into dismantlement of existing facilities that interfere with the reactor dismantling work and construction of various facilities for the dismantlement process. Through process details, the work time, manpower, and location required for each process will be calculated. Radiation field evaluation takes into account changes in the shape of structures by process and calculates millions of areas by process, so integrated scripts are developed and utilized to integrate input text data. If the radiation field evaluation confirms that the radiation risk of workers is high, mutual feedback will be exchanged so that the process can be improved, such as the installation of temporary shields. The results of this study will be used as basic data for the final decommissioning plan for Wolsong unit 1. By reasonably estimating the dose of workers through computer analysis, safety will be the top priority when decommissioning.