검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6,978

        241.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Curing agents are critical components of aqueous epoxy resin systems. Unfortunately, its uses and applications are restricted because of its low emulsifying yields. Epoxy resins are frequently used in electrical devices, castings, packaging, adhesive, corrosion resistance, and dip coating. In the presence of curing agents, epoxy resins become rigid and infusible. Eco-friendliness and mechanical functionality have emerged as vulcanization properties. Curing agents are used for surface modification, thermodynamic properties, functional approaches to therapeutic procedures, and recent advances in a variety of fields such as commercial and industrial levels. The curing agent has superior construction and mechanical properties when compared to the commercial one, which suggests that it has the potential for use as the architectural and industrial coatings. The thermal stability of cured products is good due to the presence of the imide group and the hydrogenated phenanthrene ring structure. Over the course of the projection period, it is anticipated that the global market for curing agents will continue to expand at a steady rate. The growth of the market is mainly driven by its expanding range in future applications such as adhesives, composites, construction, electrical, electronics, and wind energy. This review focused on the most recent advancements in curing techniques, emphasizing their thermal and mechanical properties. The review also presents a critical discussion of key aspects and bottleneck or research gap of the application of curing agents in the industrial areas.
        5,200원
        242.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Zeolitic imidazolate frameworks (ZIFs) along with carbon nanofibers and polyaniline composite have been explored as an electrochemical sensing platform in nitrite measurement at trace level. Owing to their topology, high surface area and porous structure, these metal–organic frameworks (MOFs) find widespread utility in different application domains. Nitrites are widely used as preservatives in dairy, meat products, and packaged food stuffs. They form N-nitrosamines, which are potential carcinogens and cause detrimental health effects. These ZIF-based MOFs along with carbon nanofibers and polyaniline have emerged as an efficient electrochemical sensing material. The composite has been characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and BET surface area studies. The electrochemical performance of the composite has been evaluated by forming as a thin film of composite on the surface of glassy carbon electrode and studying its impedance as well as electrochemical sensing behavior. The sensor exhibited good analytical response in nitrite measurement with a limit of detection of 8.1 μM. The developed sensing platform has been successfully applied to quantify the nitrite levels from water samples. The results obtained are in good agreement with the results of standard protocol.
        4,800원
        243.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the refinement of Multiwalled Carbon Nanotubes (MWCNTs) derived from chemical vapor decomposition is investigated. An ultrasonic pretreatment method is employed to disentangle carbon and metal impurities intertwined with MWCNTs. The pretreated MWCNTs exhibit a marginal decrease in C–O/C = O content from 8.9 to 8.8%, accompanied by a 2.5% increase in sp3 carbon content, indicating a mildly destructive pretreatment approach. Subsequently, selective oxidation by CO2 and hydrochloric acid etching are utilized to selectively remove carbon impurities and residual metal, respectively. The resulting yield of intact MWCNTs is approximately 85.65 wt.%, signifying a 19.91% enhancement in the one-way yield of pristine MWCNTs. Notably, the residual metal content experiences a substantial reduction from 9.95 ± 2.42 wt.% to 1.34 ± 0.06 wt.%, representing a 15.68% increase in the removal rate. These compelling findings highlight the potential of employing a mild purification process for MWCNTs production, demonstrating promising application prospects.
        4,600원
        244.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Engineering of activated carbons (ACs) through chemical activation of organic precursors has been extensively studied for a wide variety of biopolymers, biomasses, wastes and other fossil-based precursors. Despite huge efforts to engineer evermore performant and sustainable ACs, “searching-for-the-best-recipe” type of studies are more the rule than the exception in the published literature. Emerging AC applications related to energy and gas storage require strict control of the AC properties and a better understanding of the fundamentals underlying their engineering. In this study, we provide new insights into the K2CO3 chemical activation of plant-based polyphenols—lignins and tannins—through careful thermoanalytical and structural analyses. We showed for the the first time that the reactivity of polyphenols during K2CO3 chemical activation depends remarkably on their purity and structural properties, such as their content of inorganics, OH functionalities and average molecular weight. We also found that the burn-off level is proportional to the K2CO3/ lignin impregnation ratio (IR), but only within a certain range—high impregnation ratios are not needed, unlike often reported in the literature. Furthermore, we showed for the first time that the K2CO3 chemical activation of different carbon surfaces from lignins and tannins can be modelled using simple global solid-state decomposition kinetics. The identified activation energies lay in the range of values reported for heterogenous gas-carbon surface gasification reactions ( O2-C, H2O- C, or CO2- C) in which the decomposition of C(O) surface complexes is the common rate-limiting step.
        4,900원
        245.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, the trend in the performance of carbon fiber (CF) and its composite during self-polymerization of polydopamine (PDA) at carbon fiber surface was investigated by varying the self-polymerization time of dopamine in an aqueous solution. Research has shown that the PDA coating elevated the surface roughness and polarity of the inert fiber. The tensile strength of single carbon fiber was significantly improved, especially after 9 h of polydopamine self-polymerization, increasing by 18.64% compared with that of desized carbon fiber. Moreover, the interlaminar shear strength (ILSS) of CF-PDA9-based composites was 35.06% higher than that of desized CF-based composites. This research will provide a deep insight into the thickness and activated ingredients of dopamine oxidation and self-polymerization on interfacial compatibility of carbon fiber/epoxy resin composites.
        4,000원
        246.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to prevent early distress in asphalt pavement and save on subsequent operational and maintenance costs, modifying asphalt is an effective approach. Styrene–butadiene–styrene (SBS) block copolymers, due to their excellent physicochemical properties, have become a mature and widely used asphalt modifier. Carbon nanotubes (CNTs) possess advantages such as a large specific surface area and high modulus, which, when incorporated into asphalt, can enhance its deformation resistance. To analyze the effect of incorporating CNTs on SBS-modified asphalt (SBS-A), this study analyzed the influence of different CNT concentrations on the high and low-temperature performance and aging properties of SBS-A through penetration, softening point, ductility, dynamic shear rheometry, and short-term aging tests. The optimal CNT concentration was determined to be 1.0%. Furthermore, the changes in the modified asphalt during the aging process were analyzed using infrared spectroscopy.
        4,000원
        247.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The current study explores the possibility of graphene as a protective layer on the zinc substrate through an optimized electrophoretic deposition process. Graphene has been synthesized from H2SO4, HNO3, and HClO4 solutions by an electrochemical exfoliation route. This method is known for providing a scalable and economical approach to the synthesis of graphene. The exfoliated graphene nano-sheets were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, UV–visible, and field emission scanning electron microscope to evaluate its properties. The three different synthesized forms of graphene nano-sheets were electrophoretically deposited onto Zn substrates at two different potentials. Scratch testing was employed to check the adhesion quality of the coatings. The corrosion behaviour of Zn and graphene-coated Zn substrates was studied in borate buffer and 3.5 wt% NaCl solutions through potentiodynamic polarization and electrochemical impedance spectroscopy. It
        5,100원
        248.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a low-cost and easily recyclable porous green adsorbent (magnetic porous loofah biochar, MPLB) was synthesized by modifying the almost zero-cost loofah biochar material with Fe3O4. The successful synthesis of the material was demonstrated by XRD, FTIR, SEM, VSM, and BET. In addition, the material exhibits outstanding magnetic separation performance (40.01 umg/g) allowing for rapid recovery within just 90 s. The adsorption process of phenol on MPLB was found to be spontaneous and endothermic. The experimental data fit exceptionally well with the pseudo-second-order kinetic model and Langmuir model (R2 > 0.99), indicating that the dominant adsorption mechanisms involved monolayer adsorption and chemisorption. These interactions were attributed to host–guest interaction, π–π conjugation, hydrogen bonding, and pore filling. The maximum adsorption capacity calculated using the Langmuir model at 298 K is 39.4 mg/g. Importantly, even after undergoing seven cycles of recycling, MPLB retained 78% of its initial adsorption capacity. In simulated experiments employing MPLB for phenol removal in actual wastewater, an impressive removal rate of 96.4% was achieved. In conclusion, MPLB exhibits significant potential as an effective adsorbent for phenol removal in wastewater.
        4,000원
        249.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon-based materials, particularly graphite, have been extensively studied for their potential in fabricating flexible conductive fabrics with high electrical conductivity, which are attractive for wearable electronics. In this study, we investigated the effects of polar solvents, graphite concentration, and temperature on the electrical properties of conductive cotton fabrics. Our results show that the type of polar solvent and graphite concentration strongly influence the electrical conductivity of the fabrics. By controlling the graphite concentration, a wide range of conductive cotton fabrics with different conductivity values can be produced. Additionally, temperature resistance studies revealed that the fabrics exhibit both semiconductor and metallic behavior in the temperature range from room temperature to 160 °C. These interesting properties make the conductive cotton fabrics suitable for use as electrical components in circuits with resistive and inductive loads. Furthermore, we fabricated a supercapacitor with electrodes based on dispersed graphite and an electrolyte of sodium chloride salt dissolved in deionized water. Our findings suggest that conductive cotton fabrics have great potential for use in high-performance wearable electronics and energy storage devices.
        4,500원
        250.
        2024.02 KCI 등재 구독 인증기관·개인회원 무료
        Plants synthesize antioxidant compounds as a defense mechanism against reactive oxygen species. Recently, plant-derived antioxidant compounds have attracted attention due to the increasing consumer awareness in the heath industry. However, traditional methods for measuring the antioxidant activity of these compounds are time-consuming and costly. Therefore, our study constructed a quantitative structure-activity relationship (QSAR) model that can predict antioxidant activity using graph convolutional networks (GCN) from plant structural data. The accuracy (Acc) of the model reached 0.6 and the loss reached 0.03. Although with lower accuracy than previously reported QSAR models, our model showed the possibility of predicting DPPH antioxidant activity in a wide range of plant compounds (phenolics, polyphenols, vitamins, etc.) based on their graph structure.
        251.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        N-doping content and configurations have a significant effect on the electrochemical performance of carbon anodes. Herein, we proposed a simple method to synthesize highly N self-doped chitosan-derived carbon with controllable N-doping types by introducing 2ZnCO3 ·3Zn(OH)2 into the precursor. The as-synthesized NC-CS/2ZnCO3·3Zn(OH)2 electrode exhibited more than twice the reversible capacity (518 mAh g− 1 after 100 cycles at 200 mA g− 1) compared to the NC-CS electrode, superior rate performance and outstanding cycling stability. The remarkable improvement should be mainly attributed to the increase of N-doping content (particularly the pyrrolic-N content), which provided more active sites and favored Li+ diffusion kinetics. This study develops a cost-effective and facile synthesis route to fabricate high-performance N self-doped carbon with tunable doping sites for rechargeable battery applications.
        4,000원
        252.
        2024.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The optimization of deacetylation process parameters for producing chitosan from isolated chitin shrimp shell waste was investigated using response surface methodology with central composite design (RSM-CCD). Three independent variables viz, NaOH concentration (X1), radiation power (X2), and reaction time (X3) were examined to determine their respective effects on the degree of deacetylation (DD). The DD of chitosan was also calculated using the baseline approach of the Fourier Transform Infrared (FTIR) spectra of the yields. RSM-CCD analysis showed that the optimal chitosan DD value of 96.45 % was obtained at an optimized condition of 63.41 % (w/v) NaOH concentration, 227.28 W radiation power, and 3.34 min deacetylation reaction. The DD was strongly controlled by NaOH concentration, irradiation power, and reaction duration. The coefficients of correlation were 0.257, 0.680, and 0.390, respectively. Because the procedure used microwave radiation absorption, radiation power had a substantial correlation of 0.600~0.800 compared to the two low variables, which were 0.200~0.400. This independently predicted robust quadratic model interaction has been validated for predicting the DD of chitin.
        4,000원
        253.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fe3O4/g-C3N4/TiO2 catalyst has been fabricated using a simple ultrasonic method with high photocatalytic activity. The morphology, structure and optical properties of Fe3O4/ g-C3N4/TiO2 were systematically investigated by a variety of characterization techniques. The optimum degradation conditions were investigated by degrading tetracycline (TC) under visible light irradiation. The results showed that the degradation efficiency was the highest when the initial TC concentration was 5.0 mg/L, the pH value was 11 and the catalyst dosage was 1.0 g/L. After 100 min of visible light irradiation, the degradation efficiency of TC achieved at 73.61%, which was 1.64 and 1.19 times that of g-C3N4 and Fe3O4/ g-C3N4, respectively. Moreover, Fe3O4/ g-C3N4/TiO2 had good stability and recyclability. The results of capture experiments showed that ‧O2 − and ‧OH were the main active species during the photocatalytic process, and a possible photocatalytic reaction mechanism of Fe3O4/ g-C3N4/TiO2 catalyst was proposed. This study provides a new way to improve the photocatalytic performance of g-C3N4, which has great potential in degrading pollutants such as antibiotics in wastewater.
        4,000원
        254.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fluorine heteroatoms were introduced to increase the limited specific capacitances of electric double-layer capacitors (EDLCs), and the effects of the fluorine atoms were analyzed. To introduce the fluorine, a CF4 plasma treatment was used that introduced the fluorine atoms quickly. Among the fluorine functional groups in the F6-ACA framework, the semi-ionic C–F bonds induced rapid charge transfer and imparted pseudocapacitance. Consequently, we achieved a specific capacitance of 325.68 F/g for the F6-CA sample at 0.5 A/g. By analyzing the contributions of the electric double-layer capacitance and the pseudocapacitance, we determined that the contribution from the pseudocapacitance was 37.57%. A remarkable specific capacitance retention rate of 95.87% was obtained over 1000 charge/discharge cycles with a high current density of 3 A/g. Additionally, the semi-ionic C–F bonds reduced the charge transfer resistance ( Rct) by 36.8%. Therefore, the specific capacitance was improved by the fluorine heteroatoms, and the semi-ionic C–F bonds played a pivotal role in this improvement.
        4,000원
        255.
        2024.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Slipchip offers advantages such as high-throughout, low cost, and simple operation, and therefore, it is one of the technologies with the greatest potential for high-throughput, single-cell, and single-molecule analyses. Slipchip devices have achieved remarkable advances over the past decades, with its simplified molecular diagnostics gaining particular attention, especially during the COVID-19 pandemic and in various infectious diseases scenarios. Medical testing based on nucleic acid amplification in the Slipchip has become a promising alternative simple and rapid diagnostic tool in field situations. Herein, we present a comprehensive review of Slipchip device advances in molecular diagnostics, highlighting its use in digital recombinase polymerase amplification (RPA), loop-mediated isothermal amplification (LAMP), and polymerase chain reaction (PCR). Slipchip technology allows users to conduct reliable droplet transfers with high-throughput potential for single-cell and molecule analyses. This review explores the device’s versatility in miniaturized and rapid molecular diagnostics. A complete Slipchip device can be operated without special equipment or skilled handling, and provides high-throughput results in minimum settings. This review focuses on recent developments and Slipchip device challenges that need to be addressed for further advancements in microfluidics technology.
        4,000원
        256.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        β-Resin was extracted by solvent separation of refined coal tar pitch. Several analytical methods revealed that β-resin had a better aromatic plane packing structure and a higher number of carbon residues, making it ideal for mesophase transformation. The mesophase transformation process of β-resin (the formation of liquid-crystalline spheres, the growth of mesophase spheres, and the coalescence and disintegration of mesophase spheres) was observed in situ using a polarizing microscope with a hot stage. Moreover, the mesophase transformation mechanism of β-resin was investigated at each transformation stage. The mesophase content and mesophase transformation kinetics were analyzed based on the area method and quinoline insoluble (QI) substitution method. Both methods revealed changes in the mesophase content of β-resin. However, the test results of the two methods were slightly different at the initial stage of mesophase transformation and tended to be consistent during the later stage.
        4,500원
        257.
        2024.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In the merger-driven galaxy evolution scenario, dust-obscured quasars are considered to be an intermediate population between merger-driven star-forming galaxies and unobscured quasars; however, this scenario is still controversial. To verify this, it is necessary to investigate whether dust-obscured quasars have higher Eddington ratio (λEdd) values than those of unobscured quasars, as expected in the merger-driven galaxy evolution scenario. In this study, we derive black hole (BH) masses of 10 dust-obscured quasars at z ∼ 2, during the peak period of star-formation and BH growth in the Universe, using a newly derived mid-infrared (MIR) continuum luminosity (LMIR)-based estimator that is highly resistant to dust extinction. Then, we compare the λEdd values of these dust-obscured quasars to those of unobscured type-1 quasars at similar redshifts. We find that the measured log (λEdd) values of the dust-obscured quasars, −0.06 ± 0.10, are significantly higher than those of the unobscured quasars, −0.86 ± 0.01. This result remains consistent across the redshift range from 1.5 to 2.5. Our results show that the dust-obscured quasars are at their maximal growth, consistent with the expectation from the merger-driven galaxy evolution scenario at the epoch quasar activities were most prominent in the cosmic history.
        4,000원
        258.
        2024.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, we conduct a multi-frequency analysis of the gamma-ray bright blazar 1308+326 from February 2013 to March 2020, using the Korean VLBI Network at 22 and 43 GHz and gamma-ray data from the Fermi Large Area Telescope (LAT). Our findings reveal spectral variations around the 2014 gamma-ray flare, aligning with the shock-in-jet model. A strong correlation is observed between gamma-ray and 43 GHz emissions, with a 27-day lag in the VLBI core light curve, indicating a 50-day delay from the beginning of a specific radio flare to the gamma-ray peak. This radio flare correlates with a new jet component, suggesting the 2014 gamma-ray flare resulted from its interaction with a stationary component. Our analysis indicates the 2014 gamma-ray flare originated 40–63 parsecs from the central engine, with seed photons for the gamma-ray emission unlikely from the broad-line region.
        4,900원
        259.
        2024.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The Sun-Earth Lagrange point L4, which is called a parking space of space, is considered one of the unique places where solar activity and the heliospheric environment can be observed continuously and comprehensively. The L4 mission affords a clear and wide-angle view of the Sun-Earth line for the study of Sun-Earth connections from remote-sensing observations. The L4 mission will significantly contribute to advancing heliophysics science, improving space weather forecasting capability, extending space weather studies far beyond near-Earth space, and reducing risk from solar radiation hazards on human missions to the Moon and Mars. Our paper outlines the importance of L4 observations by using remote-sensing instruments and advocates comprehensive and coordinated observations of the heliosphere at multi-points including other planned L1 and L5 missions. We mainly discuss scientific perspectives on three topics in view of remote sensing observations: (1) solar magnetic field structure and evolution, (2) source regions of geoeffective solar energetic particles (SEPs), and (3) stereoscopic views of solar corona and coronal mass ejections (CMEs).
        4,000원
        260.
        2024.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this investigation, samples of the chemical (Hg1-xPbxBa2Ca1.8Mg0.2Cu3O8+δ) were prepared utilizing a solid-state reaction technique with a range of lead concentrations (x = 0.0, 0.05, 0.10, and 0.20). Specimens were pressed at 8 tons per square centimeter and then prepared at 1,138 K in the furnace. The crystalline structure and surface topography of all samples were examined using X-ray diffraction (XRD) and atomic force microscopy (AFM). X-ray diffraction results showed that all of the prepared samples had a tetragonal crystal structure. Also, the results showed that when lead was partially replaced with mercury, an increase in the lead value impacted the phase ratio, and lattice parameter values. The AFM results likewise showed excellent crystalline consistency and remarkable homogeneity during processing. The electrical resistivity was calculated as a function of temperature, and the results showed that all samples had a contagious behavior, as the resistivity decreased with decreasing temperature. The critical temperature was calculated and found to change, from 102, 96, 107, and 119 K, when increasing the lead values in the samples from 0.0 to 0.05, 0.10, and 0.20, respectively.
        4,000원