본 연구에서는 국내 유통 중인 농산물 9품목(n = 578)에 대한 납과 카드뮴 함량을 조사하고 이들의 섭취로 인한 위해성을 평가하고자 하였다. 납과 카드뮴의 함량은 마이크로웨이브 분해 후 ICP-MS로 분석하였다. 조사대상 농산물의 납 평균 함량은 각각 보리 0.014 mg/kg, 완두콩 0.010 mg/kg, 강낭콩 0.008 mg/kg, 녹두 0.006 mg/kg, 파인애플 0.008 mg/kg, 살구 0.016 mg/kg, 매실 0.015 mg/kg, 자두 0.021 mg/kg, 대추 0.019 mg/kg이었고, 카드뮴 평균함량은 보리 0.017 mg/kg, 완두콩 0.004 mg/kg, 강낭콩 0.007 mg/kg, 녹두 0.005 mg/kg, 파인애플 0.001 mg/kg, 살구 0.002 mg/kg, 매실 0.002 mg/kg, 자두 0.002 mg/kg, 대추 0.003 mg/kg이었다. 모든 시료의 납, 카드뮴 함량은 EU, CODEX 및 국내 기준보다 낮은 수준이었다. 조사 대상 농산물에 대한 납, 카드뮴의 인체노출량을 산출한 결과, 납은 잠정주간섭취허용량(PTWI, 25 μg/kg b.w./week)의 0.067%, 카드뮴은 월간잠정섭취허용량(PTMI, 25 μg/kg b.w./month)의 0.28%이었다. 이상의 결과는 조사 대상 농산물의 납, 카드뮴 오염도와 이들의 섭취에 의한 위해성이 모두 낮은 수준이라는 것을 보여준다.
Oocyte is the central factor in the bi-directional communication axis in the ovarian follicles. It controls the cumulus or granulosa cells to perform functions which are beneficial for its own development via secreting paracrine growth factors, including GDF9 and BMP15. The aim of this study was to investigate whether the recombinant GDF9 and BMP15 are able to promote meiotic resumption and cumulus expansion of canine COCs during IVM, as well as to demonstrate the actions of GDF9 and BMP15 in regulating the expression of connexin transcripts in the ovarian granulosa cells. As results, GDF9 and BMP15 significantly improved the meiotic resumption rate and cumulus expansion by activating ERK1/2 signaling. Treatments with GDF9 significantly improved the expression of CyclinB1 but inhibited the expression of Cx43 transcripts. In addition, cumulus expansion genes (MAPK1, Ptgs2, Tnfaip6 and Ptx3) were differentially improved by GDF9 and BMP15. In the ovarian granulosa cells, GDF9 suppressed the expression of Cx43 transcripts by binding ALK4/5/7 receptors and activation Smad2/3 signaling, whereas, BMP15 stimulated the expression of Cx43 transcripts by binding ALK2/3/6 receptors and activating Smad1/5/8 signaling. In conclusion, by regulating functions of granulosa/cumulus cells, oocyte has the potential to enhance the growth and maturation of itself.
Oocyte is the central factor in the bi-directional communication axis in the ovarian follicles. It controls the cumulus or granulosa cells to perform functions which are beneficial for its own development via secreting paracrine growth factors, including GDF9 and BMP15. The aim of this study was to investigate whether the recombinant GDF9 and BMP15 are able to promote meiotic resumption and cumulus expansion of canine COCs during IVM, as well as to demonstrate the actions of GDF9 and BMP15 in regulating the expression of connexin transcripts in the ovarian granulosa cells. As results, GDF9 and BMP15 significantly improved the meiotic resumption rate and cumulus expansion by activating ERK1/2 signaling. Treatments with GDF9 significantly improved the expression of CyclinB1 but inhibited the expression of Cx43 transcripts. In addition, cumulus expansion genes (MAPK1, Ptgs2, Tnfaip6 and Ptx3) were differentially improved by GDF9 and BMP15. In the ovarian granulosa cells, GDF9 suppressed the expression of Cx43 transcripts by binding ALK4/5/7 receptors and activation Smad2/3 signaling, whereas, BMP15 stimulated the expression of Cx43 transcripts by binding ALK2/3/6 receptors and activating Smad1/5/8 signaling. In conclusion, by regulating functions of granulosa/cumulus cells, oocyte has the potential to enhance the growth and maturation of itself.
The concern over beauty is increasing as the importance of appearance is becoming more prominent. Accordingly, the importance of studying beauty is now apparent. The purpose of this study is to analyze existing beauty-related research in order to assess current trends in beauty-related studies. Materials were collected from the master’s theses and academic journals from 1997 through 2016. In addition, 81 beauty-related papers were selected and classified into 3 categories according to their subjects and content. There were 19 hair attitude papers, 52 papers about make-up and skincare, and 10 papers on cosmetic surgery. Each type was divided into detailed themes according to the study theme and its number was grasped. Consequently it was classified into 9 themes about the attitude toward hair and the relevant variable study, 10 themes about the attitude toward hair style and relevant variable study, 24 themes about the make-up attitude and relevant variable study, 28 themes about the skin care attitude and relevant variable study, and 10 themes about the cosmetic surgery attitude and relevant variable study. The results revealed that academic concern about beauty sharply increased starting in 2005. Moreover, we determined that the methodologies used in hair and make-up studies were sound and detailed, while cosmetic surgery studies were more inconsistent and poorly analyzed. Thus cosmetic surgery should be further researched in a more standardized and thorough manner. This review of attitudes toward beauty will serve as a basis for follow-up studies that employ meta-analyses to draw more quantitative conclusions by aggregating many more study results.
Somatic cell nuclear transfer (SCNT) has been considered for preserving genetically valuable or endangered animals. Sapsaree is a Natianal Monument in Korea to maintian a pure pedigree. The aim of this study was to produce azoospermia Sapsaree using SCNT and identify normal reproductive ability of cloned azoospermia Sapsaree. Ear skin biopsy was performed on a thirteen-year-old azoospermia Sapsaree and ear skin fibroblasts were isolated for SCNT as donor cells. The fibroblasts were injected into enucleated in vivo matured oocytes, the couplets were electrical fused by two pulse of direct current (55 V for 15 μs) using titanium and platinum fusion needle and activated by calcium ionophore. Cloned embryos were surgically transferred into oviducts of natuarally estrus cycle synchronized recipient dogs. The fusion rate of platinum needle was 70%, which was higher than those of titanium needle (64.1%). Developmental rate to the 8 cells and 10 cell stages was higher in platinum needle group (24% and 16%, respectively) than those of platinum needle group (14.8% and 3.1%, respectively). Total 35 SCNT embryos were transferred into oviducts of 3 recipient dogs and one recipient finally delivered a puppy by caesarean section. As results, this study demonstrated that platinum fusion needle could be successfully make the reconstructed embryos and improve the efficiency of canine SCNT. Cloning azoospermia Sapsaree may contribute to conserve genetically valuable and unique pedigree. And further study should be confirm whether cloned live dog is azoospermia.
Prolonged communication between oocytes and the surrounding somatic cells is one of the unique reproductive physiology in canine. Paracrine Kit ligand (KITL) signaling is a well-known communication between granulosa cells and the oocyte. KITL is a cytokine growth factor secreted by granulosa cells that signals via the c-kit receptor expressed by oocytes. Paracrine factors, including growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15), exert their effects by binding with the kinase receptors expressed on the granulosa cells. However, the regulations of GDF9 and BMP15 in the canine KITL expression are currently poorly understood. Therefore, we investigated the effects of GDF9 and BMP15 on the expression of KITL in canine ovarian granulosa cells in vitro.
In Annexin V assay recombinant GDF9 and BMP15 did not induce apoptosis in the cultured ovarian granulosa cells. When treated, FSH significantly increased KITL expression, and hCG suppressed its expression. When both FSH and hCG were treated, the expression of KITL was affected by GDF9 and BMP15 in dose and time dependent manner in the luteal granulosa cells. GDF9 (10 ng/mL) significantly decreased KITL expression after12 h. BMP15 (10 ng/mL) significantly also decreased KITL expression after 24 h. Western blot and immunochemistry results indicate that GDF9 activated Smad2/3. After blocking ALK 4/5/7 receptors by SB, GDF9 failed to activate Smad2/3, also BMP15 did not activate Smad1/5/8 after blocking ALK 2/3/6 receptors by DM. So GDF9 exerts its effects via using ALK 4/5/7 receptors to activate SMAD2/3 signaling, and BMP15 binds ALK 2/3/6 receptors to activate SMAD1/5/8 signaling. The expression of KITL was not changed by SB or DM treatment. However, the effect of GDF9 and BMP15, which decreased the expression of KITL, was suppressed by SB or DM treatment.
In conclusion, this study provides the first evidence that recombinant GDF9 and BMP15 decrease KITL expression in canine ovarian granulosa cells.
The cancer and Parkinson's disease associated protein DJ-1 is multifunctional protein that involves in diverse cellular process. DJ-1 protein has a cellular protective role and promoted cell survival under an oxidative stress. However, the cellular protective mechanism of DJ-1 is not fully understand, and we needs to be further study their functions in novel organisms.
In the present study, we investigated the protective role of DJ-1 against induced oxidative stress in canine cell line. On the basis of these experiments, canine DJ-1 overexpressing and null cell lines were established. The stable overexpression and down regulation of DJ-1 efficiency confirmed by the western blot analysis. Subsequently, the DJ-1 gene transfected cell lines and control cells were subjected to induced the oxidative stress, and then cell viability, cell proliferation assay, cellular apoptosis detection analysis (Annexin V and TUNEL assay), intracellular ROS and mitochondrial activity were measured appropriately. The results showed that DJ-1 overexpressed cells were up-regulated cell viability under oxidative stress conditions induced by the rotenone and hydrogen peroxide (H2O2), whereas loss of DJ-1 cells were down-regulated the cell survival activity. Additionally, overexpression of DJ-1 cells increased cell resistance to oxidative stress and inhibited the elevation of cell death and cellular ROS induced apoptosis. Moreover, DJ-1 overexpressed cells was increased mitochondrial functions by using confocal microscopy with MitoTracker staining. On the contrary to this, DJ-1 null cells show defective cellular protection and mitochondria activity against oxidative stress conditions.
Our data indicate that canine DJ-1 protein attenuates cellular apoptosis and ROS generation, enhances the cellular survival activity and promote mitochondrial function under the oxidative stress, likewise other mammalian cells. Importantly, DJ-1 overexpression may be an important part of a protective strategy as a sensor for oxidative stress.
For more than two decades, the intracytoplasmic sperm injection (ICSI) technique has been used as a valuable tool to provide opportunities for studying fertilization, treating human infertility, and producing transgenic animals. Not only in facilitating fertilization but also in propagating mammalian species, ICSI has enhanced the potential of assisted reproductive technologies in human. Polyspermic fertilization has been one of major problems in pig reproduction, but the ICSI helped to solve the problem, and used widely to generate transgenic piglets. Although the ICSI technique is considered to be a very useful tool in assisted reproductive technologies, including generation of transgenic animals, there are some disadvantages using the technique. In this review, we describe the ICSI technique and its application in animal production and human infertility, and discuss advantage and disadvantage of the technique in mammals.
The objective of this study was to investigate the effects of NEAA and leptin supplemented to in vitro culture medium on the developmental competence of porcine embryos after intracytoplasmic sperm injection (ICSI), and to modify the culture condition to improve the quality and the development of ICSI-derived porcine embryos in vitro. After ICSI, the putative zygotes were then cultured in PZM-3 medium with/without NEAA or leptin. The proportion of embryos that developed to the blastocyst stage significantly increased when 1% NEAA (24.62%) was added to the medium compared with 2% NEAA and no NEAA group (17.24% and 20.24%, respectively, p<0.05). The effect of different concentration of leptin (0, 10, 100, 500 ng/ml) was evaluated on the development of porcine ICSI embryos cultured in vitro. In case of blastocyst formation, 100 ng/ml group (27.05%) showed significantly higher rate than 10, 500 ng/ml, and control group (23.45%, 17.99%, and 19.68%, respectively, p<0.05). We also evaluated the effects of different NEAA and leptin treatment time on the development of porcine embryos after ICSI. Among groups of embryos cultured in the presence of NEAA or leptin for whole 7 days (D 1-7), first 4 days (D 1-4), the subsequent 3 days (D 5-7), both NEAA (27.13%, 21.17 %, and 17.56%, respectively, p<0.05) and leptin (25.60%, 20.61%, and 16.53%, respectively, p<0.05) showed that supplementation for whole 7 days significantly increased the blastocyst formation rate compared with the other groups of D1-4 and D5-7. We further evaluated the combination effect of 1% NEAA and 100 ng/ml leptin compared with the effect of each supplementation with 1% NEAA or 100 ng/ml leptin or no supplementation on development of embryos. For blastocyst formation, combination group of NEAA and leptin (24.78%) showed significantly higher rate than other three groups (18.37%, 20.44 %, and 13.27%, respectively, p<0.05). We further evaluated the expression of proapoptosis genes such as BAX and BAK and anti-apoptosis genes, BCL-XL and BCL-2 in blastocysts cultured in the presence of 100 ng/ml leptin. RT-PCR analysis revealed that leptin supplementation significantly decreased the expression of pro-apoptosis genes as well as increased the expression of anti-apoptosis genes. These results of present study demonstrate that NEAA and leptin could improve the in vitro development of ICSI- derived porcine embryos with optimal concentration of each reagent. Furthermore, the optimal culture condition could increase the quality of ICSI-derived embryos in vitro.
True hermaphrodites are animals of equivocal sex in which both male and female gonads develop simultaneously. The frequency of true hermaphroditism is higher in pigs than in other domestic animals. Two Korean pigs were diagnosed with true hermaphroditism showing ovotestes, epididymes, penes, and uteri. Histomorphologically, the testicular tissues consisted of Sertoli cells that were devoid of spermatogenic germ cells and showed proliferation of interstitial cells. However, the uteri were of normal architecture and had well-developed uterine endometrial glands. The samples were 38, XX female karyotype without the sex-determining region Y (SRY) gene. The findings of this study could contribute to the understanding of true hermaphroditism in the Korean pig industry. * This work was supported by a grant (Code# PJ008148) from BioGreen21 Program, Rural Development Administration, Republic of Korea.
The aim of this study was to examine the effect of acteoside (the cyclin-dependent kinase inhibitor) on the SCNT efficiency with adult fibroblasts in dog. Canine adult fibroblasts were obtained from muscle and cell cycle of fibroblasts was synchronized by culturing to confluency, serum starvation and treating with 30 μM acteoside for 48 h. Cell cycle stages, cell cytotoxicity (apoptosis) and, prduction of reactive oxygen species (ROS) were analyzed using flow cytometry. The canine cells, prepared by confluent-cell culture or treating with 30 μM acteoside for 48 h, were injected into enucleated in vivo matured oocytes, the couplets were electrical fused and activated by calcium ionomycin. SCNT embryos using acteoside-treated fibroblasts were surgically transferred into oviducts of estrus cycle synchronized recipient dogs. In cell cycle synchronization (G0/G1), there was no significant difference between serum starvations (83.9%) and acteoside treated groups (81.3%) that were higher than confluent group (78.5%). In production of apoptosis, confluent and acteoside treated groups (4.3 and 4.5%, respectively) were generated less than serum starvation group (21.8%). In case of ROS, serum starvation group was induced a significantly higher than other groups. After synchronization of the donor cell cycle, either confluent or acteoside treated, cells were placed with enucleated in vivo-matured dog oocytes, fused by electric stimulation, activated, and transferred into naturally estrus-synchronized surrogates. Fusion and cleavage rate of acteoside treated group were 64.1 and 41.5%, which were higher than those of confluent group (53.9 and 20.6%, respectively). The reconstructed embryo development rates to 4-cell and 8-cell in acteoside treated group were 29.5 and 14.8%, respectively, while confluent group showed 11.1 and 3.2%, respectively. Total 54 SCNT embryos using acteoside-treated fibroblasts were transferred into oviducts of 2 recipient dogs and one recipient finally delivered one puppy, whereas din`t detected pregnancy on transfer of cloned embryos reconstructed with confluent cells in 6 surrogate dogs. In conclusion, the results of the current study demonstrated that canine fibroblasts could be successfully arrested at the G0/G1 stage with reduced the formation of ROS and apoptosis after acteoside treatment. This results may contribute to improve the effi-ciency of canine SCNT. * This research was supported by iPET (Grants 110056-3), Ministry for Food, Agriculture, Forestry and Fisheries, Republic of Korea.
Acteoside acts as an anti-oxidative activity and anti-apoptosis in the cells. But, it has been not studied on maturation and development of porcine oocytes. The aims of the present study were to examine the effects of acteoside on the morphological progress of meiosis, developmental competence, and ROS in porcine oocytes. Oocytes were matured in tissue culture medium-199, supplemented with acteoside at various concentrations: 0 (control), 10, 30 and 50 μM. The oocytes maturation rates of groups supplemented with acteoside were no significantly different (81.13, 85.96, 82.95 and 83.68%, respectively). Level of ROS was significantly decreased in acteoside treated group. Furthermore, the parthenogenetic blastocyst rate was significantly improved in 10 μM acteoside treated group compared with control group (44.83 vs. 27.75%). And we investigated effect of acteoside on the oocytes condition represented by cytoplasmic maturation by homogeneous distribution and formation of cytoplasmic organelles and regulation of apoptosis-related genes. In the results. during IVM, 10 μM acteoside treated oocytes showed that the mitochondria and lipid droplet were smaller and homogeneous distribution in cytoplasm compare with control oocytes. And reverse transcription polymerase chain reaction (RTPCR) of parthenogenetic blstocysts revealed that acteoside increased the anti-apoptotic genes (Mcl-1, Bcl-2 and Bcl-xL), whereas reduced the expression of pro-apoptotic genes (Bax and Bak). In conclusion, based on the results, the effect of acteoside on IVM was not attractive. However, in acteoside treated group, cytoplasmic maturation seemed to be improved with morphologically uniform distribution of cytoplasmic organelles. Furthermore, embryonic development in acteoside treated group was significantly highly increased than that of non-treated group. Our results represents that addition of acteoside to the IVM medium has a beneficial effect in physiology of porcine oocytes, providing a improved method for porcine oocytes in vitro. * This work was supported by a grant (Code# PJ008148) from BioGreen21 Program, Rural Development Administration, Republic of Korea.
The objective of the current study was to describe in vitro embryo production in Hanwoo, analyzing oocytes yield and embryo production. The effects of oocytes production and the number of OPU procedures per animal on embryo production were also evaluated. OPU was done every 3~4 days during experimental period and collected oocytes were fertilized in vitro in both OPU and needle puncture groups. First, we compared the recovery rate of oocytes based on OPU session (Experiment 1). The average of collected oocytes was calculated from every 10 session. The average number of total oocytes recovered per animalonsessionwas 5.16 (mean). Second, we compared the recovery rate base on collection period of OPU (Experiment 2). The following results show the difference of the number of recovered oocytes in every month during the procedure between the months of session. Every animal shows the constant number of recovered oocytes for the first 5 months. However, the recovery rate of oocytes was decreased from month 6 to 8. Third, we compared the developmental rate to blastocyst in two groups (Experiment 3). Oocytes by needle puncture were fertilized with frozen-thawing semen; the cleavage rate 24~48 h after in vitro fertilization (IVF) was 75.8% and blastocyst development rate was 18.8% in needle puncture group. Even though there is lower cleavage rate after IVF in OPU group (61.1%), blastocyst development rate was higher compared with needle puncture group (28.4%). In conclusion, Blastocyst developmental rate could be increased by OPU than classical method of needle puncture. Improvement of bio- technique in collecting oocytes could be applied to understand the reproductive physiology in cattle, expecially Hanwoo. Therefore, further investigation should be done to clarify the efficiency and advantage of OPU involved in reproduction in animals and human being.